Skip to main content
Log in

Near-Surface Plasma Formed by Dual-Pulse Laser Action at Two Wavelengths on Titanium in Air

  • Published:
Journal of Applied Spectroscopy Aims and scope

Spectra and structures of near-surface plasma torches were studied experimentally by measuring the specific mass loss and plume luminosity caused by dual-pulse laser radiation at wavelengths 1064 and 532 nm on titanium in air as functions of the time between laser pulses and their sequence. Dependences of the laser-plasma temperature and concentration of charged particles on the paired laser pulse parameters were established at laser radiation power densities q1064 ≤ 3.1·109 and q532 ≤ 2.7·109 W/cm2 for λ = 1064 and 532 nm. The optimal conditions for recording erosion plasma spectra had the initial effect from second-harmonic radiation with a time interval between pulses of 4–5 μs; for specific mass loss, 3–6 μs. The results were important for enhancing the efficiency of laser emission spectral analysis and laser-plasma processing of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Anisimov, Ya. A. Imas, G. S. Romanov, and Yu. V. Khodyko, Action of High-Power Radiation on Metals [in Russian], A. M. Bonch-Bruevich and M. A. El′yashevich (Eds.), Nauka, Moscow (1970).

  2. A. M. Prokhorov, V. I. Konov, I. Ursu, and I. N. Mikheilesku, Interaction of Laser Radiation with Metals [in Russian], Nauka, Moscow (1988).

  3. V. I. Bergel′son, A. P. Golub′, T. V. Loseva, I. V. Nemchinov, T. I. Orlova, S. P. Popov, and V. V. Svettsov, Kvantovaya Elektron. (Moscow), 1, No. 5, 1268–1271 (1974).

  4. M. A. El′yashevich, L. Ya. Min′ko, G. S. Romanov, Yu. A. Stankevich, Yu. A. Chivel′, and A. N. Chumakov, Izv. Akad. Nauk SSSR, Ser. Fiz., 49, No. 6, 1132–1139 (1985).

  5. L. Ya. Min′ko, A. N. Chumakov, and N. A. Bosak, Kvantovaya Elektron. (Moscow), 17, No. 11, 1480–1484 (1990).

  6. R. Sattmann, V. Strum, and R. Noll, J. Phys. D: Appl. Phys., 28, 2181–2187 (1995).

    Article  ADS  Google Scholar 

  7. S. G. Gornyi, A. M. Grigor′ev, M. I. Patrov, V. D. Solov′ev, and G. A. Turichin, Kvantovaya Elektron. (Moscow), 32, No. 10, 929–932 (2002).

  8. S. M. Klimentov, P. A. Pivovarov, V. I. Konov, D. Breitling, and F. Dausinger, Kvantovaya Elektron. (Moscow), 34, No. 6, 537–540 (2004).

  9. S. M. Pershin, Kvantovaya Elektron. (Moscow), 39, No. 1, 63–67 (2009).

  10. S. M. Pershin, Kvantovaya Elektron. (Moscow), 16, No. 2, 325–330 (1989).

  11. L. Ya. Min′ko, A. N. Chumakov, and G. I. Bakanovich, Zh. Prikl. Spektrosk., 61, Nos. 5–6, 476–484 (1994) [L. Ya. Min′ko, A. N. Chumakov, and G. I. Bakanovich, J. Appl. Spectrosc., 61, 805–811 (1994)].

  12. M. L. Petukh, V. A. Rozantsev, A. D. Shirokanov, and A. A. Yankovskii, Zh. Prikl. Spektrosk., 67, No. 6, 798–801 (2000) [M. L Petukh, V. A. Rozantsev, A. D. Shirokanov, and A. A. Yankovskii, J. Appl. Spectrosc., 67, 1097–1101 (2000)].

  13. R. Noll, Laser-Induced Breakdown Spectroscopy. Fundamentals and Applications, Springer, Berlin–Heidelberg (2012).

  14. A. N. Chumakov, V. B. Avramenko, and N. A. Bosak, Zh. Prikl. Spektrosk., 79, No. 2, 279–287 (2012) [A. N. Chumakov, V. B. Avramenko, and N. A. Bosak, J. Appl. Spectrosc., 79, 261–268 (2012)].

  15. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, Appl. Phys. B: Lasers Opt., 80, 559–568 (2005).

    Article  ADS  Google Scholar 

  16. E. A. Ershov-Pavlov, K. Yu. Katsalap, K. L. Stepanov, and Yu. A. Stankevich, Spectrochim. Acta, Part B, 63, 1024–1037 (2008).

  17. A. A. I. Khalil, Laser Phys., 20, No. 1, 238–244 (2010).

    Article  ADS  Google Scholar 

  18. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley & Sons, Chichester, West Sussex, England, Hoboken, NJ (2006).

  19. V. Pinon and D. Anglos, Spectrochim. Acta, Part B, 64, 950–960 (2009).

  20. S. Amoruso, R. Bruzzese, X. Wang, G. O′Connel, and J. G. Lunney, J. Appl. Phys., 108, 113302 (2010).

  21. V. S. Burakov, A. F. Bokhanov, M. I. Nedel′ko, and N. V. Tarasenko, Kvantovaya Elektron. (Moscow), 33, No. 12, 1065–1071 (2003).

  22. A. N. Chumakov, N. A. Bosak, and V. L. Rudakov, in: Proceedings of the 2nd Belarusian Cosmic Congress [in Russian], 2005, pp. 45–49.

  23. A. N. Chumakov, N. A. Bosak, and A. V. Panina, in: Proceedings of the VIIIth International Scientific Conference Laser Physics and Optical Technologies, Minsk (2010), Vol. 2, pp. 150–153.

  24. A. N. Chumakov, N. A. Bosak, and A. V. Panina, Zh. Prikl. Spektrosk., 84, No. 4, 595–602 (2017) [A. N. Chumakov, N. A. Bosak, and A. V. Panina, J. Appl. Spectrosc., 84, 620–626 (2017)].

  25. A. De Giacomo, M. Dell′Aglio, A. Santagata, and R. Teghil, Spectrochim. Acta, Part B, 60, 935–947 (2005).

  26. H. Hegazy, H. A. Abd El-Ghany, S. H. Allam, and T. M. El-Sherbini, Appl. Phys. B: Lasers Opt., 117, 343–352 (2014).

    Article  ADS  Google Scholar 

  27. A. M. Elsied, P. C. Dieffenbach, P. K. Diwakar, and A. Hassanein, Spectrochim. Acta, Part B, 143, 26–31 (2018).

  28. H. R. Griem, Plasma Spectroscopy, McGraw-Hill, New York (1964), 580 pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Bosak.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 5, pp. 751–759, September–October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumakov, A.N., Bosak, N.A. & Ivanov, A.A. Near-Surface Plasma Formed by Dual-Pulse Laser Action at Two Wavelengths on Titanium in Air. J Appl Spectrosc 86, 836–842 (2019). https://doi.org/10.1007/s10812-019-00903-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00903-4

Keywords

Navigation