Skip to main content
Log in

Mica Dehydroxylation Mechanism

  • Published:
Journal of Applied Spectroscopy Aims and scope

The dehydroxylation mechanism of mica is studied using IR spectroscopy; x-ray structure and thermodynamic analysis; and kinetic, quantum-mechanical, and quantum-chemical methods. Dehydroxylation is shown to involve localization of a proton between two O atoms. A model in which the hydroxyl proton is placed in a double potential well is proposed. The model allows the basic features of mineral dehydroxylation to be revealed. The proton energy increases if the mineral is heated so that the barrier becomes more transparent. The probability of a particle transitioning through the barrier owing to a tunnel effect is considered. The change of this probability defines the dehydroxylation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. F. Kiselev, in: Abstracts of Papers of the Ist All-Union Conf. on Theor. Issues of Adsorption [in Russian], Moscow (1967), pp. 116–131.

  2. T. I. Shishelova, N. G. Tyurin, E. A. Chaikin, and S. B. Leonov, Physicochemical Principles of Mica Composite Manufacturing [in Russian], Izd. LadB, Ekaterinburg (1993).

    Google Scholar 

  3. A. S. Sun-Tso-Zhen, T. I. Shishelova, and E. L. Lipovchenko, Mezhdunar. Zh. Eksp. Obraz., Nos. 8–2, 96–97 (2014).

  4. T. I. Shishelova and M. S. Metsik, Zh. Prikl. Spektrosk., 14, No. 2, 303–307 (1971).

    Google Scholar 

  5. T. I. Shishelova, M. S. Metsik, and K. Ya. Sokolov, Zh. Prikl. Spektrosk., 20, No. 6, 1042–1044 (1974) [T. I. Shishelova, M. S. Metsik, and K. Ya. Sokolov, J. Appl. Spectrosc., 20, 784–786 (1974)].

  6. G. V. Yukhnevich, Usp. Khim., 32, No. 11, 1397–1423 (1963).

    Article  Google Scholar 

  7. I. I. Plyusnin, Infrared Spectra of Silicates, Izd. MGU, Moscow (1967).

    Google Scholar 

  8. B. V. Deryagin, N. V. Churaev, and F. D. Ovcharenko, Water in Disperse Systems [in Russian], Khimiya, Moscow (1989).

    Google Scholar 

  9. V. V. Balashov and V. K. Dolinov, Course in Quantum Mechanics [in Russian], NITs Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk (2001).

    Google Scholar 

  10. P. I. Dorogokupets and I. K. Karpov, Thermodynamics of Minerals and Mineral Equilibria [in Russian], Nauka, Novosibirsk (1984).

    Google Scholar 

  11. T. I. Shishelova and E. L. Lipovchenko, Fundam. Issled., Nos. 6–2, 311–315 (2015).

  12. T. I. Shishelova and E. L. Lipovchenko, Usp. Sovrem. Estestvozn., No. 12, 177–184 (2015).

  13. V. A. Blatov, A. P. Shevchenko, and B. V. Peresypkina, Semi-Empirical Calculation Methods of Quantum Chemistry [in Russian], Univers-grupp, Samara (2005).

    Google Scholar 

  14. I. I. Fripiat, P. Rouxhet, and H. Jacobs, Ann. Mineral., 50, No. 11/12, 1937–1958 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Shishelova.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 5, pp. 729–734, September–October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishelova, T.I., Lipovchenko, E.L. & Shulga, V.V. Mica Dehydroxylation Mechanism. J Appl Spectrosc 86, 817–821 (2019). https://doi.org/10.1007/s10812-019-00899-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00899-x

Keywords

Navigation