Skip to main content
Log in

Spectroscopic Investigation of Properties of Blue Sapphire Samples Depending on Heating Conditions

  • Published:
Journal of Applied Spectroscopy Aims and scope

The 3309, 3232, and 3185 cm–1 are a series of peaks defined as the 3309 cm–1-series peaks of the functional group absorptions in the mid-infrared region of gem corundum samples, in particular, the blue sapphires. In this study, the 3309 cm–1-series peaks were attributed to –Ti–OH stretching. However, the application of revealing these series peaks is still limited because the mechanism of those peaks during the heating process has yet to be clarified. This study showed that the characteristics of the peaks depend strongly on the TiO2 content in the sapphire samples. Energy dispersive X-ray fluorescence (EDXRF) spectrometry indicated that the samples with Ti content >0.02 wt.% usually show the 3309 cm–1-series peaks with strong intensity. In addition, the X-ray absorption spectra (XAS) revealed that the oxidation state of Fe is Fe3+ while Ti is Ti4+ for every heating temperature. The UV-Vis-NIR optical absorption showed that the alteration of the bands at 580 and 710 nm, defined as the Fe3+/Ti4+ pair, was related directly to the atmospheric heating conditions. In contrast, the intensity of the 3309 cm–1-series peaks gradually decreased with increase in heating temperatures in any given atmosphere. This is a result of the mechanism of the bonding between Ti and/or Fe atoms and –OH in blue sapphire structures caused by the heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Webster, Gems: Their source, Descriptions and Identifi cation, 5th rev. edn., Butterworth Heinemann, Oxford (1994).

  2. K. Nassau, The Physics and Chemistry of Color: The Fifteen Causes of Color, 2nd edn., Wiley, New Jersey (2001).

  3. K. Nassau, Gems Gemol., 3, 121–131 (1981).

    Article  Google Scholar 

  4. K. Nassau, Am. Min., 63, 219–229 (1978).

    Google Scholar 

  5. P. Wongrawang, N. Monarumit, N. Thammajak, P. Wathanakul, and W. Wongkokua, Mater. Res. Express, 3, 026201 (2016).

    Article  ADS  Google Scholar 

  6. A. Phlayrahan, N. Monarumit, S. Satitkune, and P. Wathanakul, J. Appl. Spectrosc., 85, 385–390 (2018).

  7. N. Monarum it, W. Wongkokua, and S. Satitkune, Proc. Comput Sci., 86, 180–183 (2016).

  8. N. Monarumit, W. Wongkokua, and S. Satitkune, Key Eng. Mater., 37, 585–589 (2017).

    Article  Google Scholar 

  9. D. S. McClure, J. Chem. Phys., 36, 2757–2759 (1962).

  10. A. Phlayrahan, N. Monarumit, S. Satitkune, and P. Wathanakul, Proc. 4th International Gems & Jewelry Conference (GIT2014), December 8–9, 2014, Chiangmai (2016), pp. 211–216.

  11. A. R. Moon and M. R. Phillips, J. Am. Ceram. Soc., 77, 356–367 (1994).

  12. F. K. Volynets, V. G. Vorob'ev, and E. A. Sidorova, J. Appl. Spectros., 10, 665–667 (1972).

  13. A. R. Moon and M. R. Phillips, Phys. Chem. Solid., 52, 1087–1099 (1991).

    Article  ADS  Google Scholar 

  14. C. Smith, J. Gemmol., 24, 321–335 (1995).

    Article  Google Scholar 

  15. A. Beran and R. G. Rossman, Eur. J. Mineral., 18, 441–447 (2006).

    Article  ADS  Google Scholar 

  16. G. Lehmann and H. Harder, Am. Mineral., 55, 98–105 (1970).

    Google Scholar 

  17. J. Ferguson and P. E. Fielding, Chem. Phys. Lett., 10, 262–265 (1971).

    Article  ADS  Google Scholar 

  18. A. Beran, Eur. J. Mineral., 3, 971–975 (1991).

    Article  ADS  Google Scholar 

  19. K. Eigenmann and Hs. H. Günthard, Chem. Phys. Lett., 12, 12–15 (1971).

  20. J. L. Emmett, K. Scarratt, S. F. McClure, T. Moses, T. R. Douthit, R. Hughes, S. Novak, J. E. Slighley, W. Wang, O. Bordelon, and R. E. Kan, Gems Gemol., 39, 84–135 (2003).

    Article  Google Scholar 

  21. J. Madejová, Vib. Spectrosc., 31, 1–10 (2003).

    Article  Google Scholar 

  22. H. I. Joe, A. K. Vasudevan, G. Aruldhas, A. D. Damodaran, and K. G. K. Warrier, J. Solid State Chem., 131, 181–184 (1997).

    Article  ADS  Google Scholar 

  23. S. Saminpanya, Aust. Gemmol., 21, 125–128 (2001).

    Google Scholar 

  24. N. Monarumit, S. Satitkune, and W. Wongkokua, J. Phys. Conf. Ser., 901, 012074 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Phlayrahan.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 5, pp. 721–728, September–October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phlayrahan, A., Monarumit, N., Lhuaamporn, T. et al. Spectroscopic Investigation of Properties of Blue Sapphire Samples Depending on Heating Conditions. J Appl Spectrosc 86, 810–816 (2019). https://doi.org/10.1007/s10812-019-00898-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00898-y

Keyword

Navigation