Skip to main content
Log in

A Comprehensive Study on Theoretical and Experimental Effects of Nicotinic Acid and Picolinic Acid on the Structure and Stability of Human Serum Albumin

  • Published:
Journal of Applied Spectroscopy Aims and scope

The interaction of nicotinic acid (Nic) and picolinic acid (Pic), as two pyridine carboxylic acids, with human serum albumin (HSA) as a major transport protein in the blood was investigated using UV-Vis, fluorimetry, circular dichroism (CD), and molecular docking studies. The melting point (Tm) and ΔG0(298K) of HSA, as two thermodynamic parameters, were obtained from thermal denaturation of HSA with and without the presence of Nic and Pic. Tm values of 332.5, 336.4, and 333.9 K, and ΔG0(298K) of 97.4, 99.9, and 118.9 kJ/mol were recorded for HSA alone and following incubation with Nic and Pic, respectively. In chemical denaturation experiments utilizing guanidine hydrochloride (GuHCl), value of ΔG0H2O of 12.5, 16, and 15.3 kJ/mol, [Ligand]1/2 of 2.2, 2.4, and 2.3 M, and m of 5.6, 6.6, and 6.6 kJ/(mol × M) were recorded, respectively. The results of CD, UV-Vis spectroscopy, and molecular dynamics (MD) simulations showed that the binding of Nic and Pic to HSA induced conformational changes in HSA. Furthermore, the study of molecular docking indicated that the binding affinity of the Nic and Pic to site І (subdomain ІІA) is greater than that of site ІI (subdomain ІІIA) of HSA. These results provide valuable insights into the binding mechanisms of Nic and Pic to a plasma protein that is known to play an important role in the delivery of drugs to target organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Waghmare, K. L. Wasewar, S. S. Sonawane, and D. Z. Shende, Sep. Purif. Technol., 120, 296–303 (2013).

    Google Scholar 

  2. L. A. Carlson, J. Int. Med., 258, No. 2, 94–114 (2005).

    Google Scholar 

  3. N. Khu nnawutmanotham, N. Chimnoi, P. Saparpakorn, P. Pungpo, S. Louisirirotchanakul, S. Hannong bua, and S. Techasakul, Molecules, 12, No. 2, 218–230 (2007).

    Google Scholar 

  4. M. C. Lourenço, M. V. de Souza, A. C. Pinheiro, M. d. L. Ferreira, R. S. Gonçalves, T. C. M. Nogueira, and M. A. Peralta, Arkivoc, 15, 181–191 (2007).

    Google Scholar 

  5. W. L. Mi tchell, G. M. Giblin, A. Naylor, A. J. Eatherton, B. P. Slingsby, A. D. Rawlings, K. S. Jandu, C. P. Haslam, A. J. Brown, and P. Goldsmith, Bioorg. Med. Chem. Lett., 19, No. 1, 259–263 (2009).

    Google Scholar 

  6. N. B. Pa tel and F. M. Shaikh, Saudi Pharm. J., 18, No. 3, 129–136 (2010).

    Google Scholar 

  7. M. Pavlo va, A. Mikhalev, M. Kon'shin, M. Y. Vasil'eva, L. Mardanova, T. Odegova, and M. Vakhrin, Pharm. Chem. J., 35, No. 12, 664–666 (2001).

    Google Scholar 

  8. R. Grant , S. Coggan, and G. Smythe, Int. J. Tryptophan Res., 2, 71 (2009).

    Google Scholar 

  9. J. A. Fe rnandez-Pol, P. D. Hamilton, and D. J. Klos, Anticancer Res., 21, No. 2A, 931–957 (2001).

    Google Scholar 

  10. P. Lee and X. Wu, Curr. Pharm. Des., 21, No. 14, 1862–1865 (2015).

    Google Scholar 

  11. C. Müller, R. T. Farkas, F. Borgna, R. M. Schmid, M. Benešová, and R. Schibli, Bioconjug. Chem.,28, No. 9, 2372–2383 (2017).

    Google Scholar 

  12. O. Dömötör, T. Tuccinardi, D. Karcz, M. Walsh, B. S. Creaven, and É. A. Enyedy, Bioorg. Chem., 52, 16–23 (2014).

    Google Scholar 

  13. A. Garg, D. M. M anidhar, M. Gokara, C. Malleda, C. S. Reddy, and R. Subramanyam, PLoS One, 8, No. 5, e63805 (2013).

    ADS  Google Scholar 

  14. D. P. Yeggoni, M. Gokara, D. Mark Manidhar, A. Rachamallu, S. Nakka, and C. S. Reddy, R. Subramanyam, Mol. Pharm.,11, No. 4, 1117–1131 (2014).

    Google Scholar 

  15. O. Trott and A. J. Olson, J. Comput. Chem., 31, No. 2, 455–461 (2010).

    Google Scholar 

  16. G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, and A. J. Olson, J. Comput. Chem., 19, No. 14, 1639–1662 (1998).

    Google Scholar 

  17. E. Lindahl, B. H ess, and D. Van Der Spoel, Mol. Model. Annual, 7, No. 8, 306–317 (2001).

    Google Scholar 

  18. A. W. Schüttelko pf and D. M. Van Aalten, Acta Crystallogr. D: Biol. Crystallogr., 60, No. 8, 1355–1363 (2004).

    Google Scholar 

  19. W. F. van Gunster en, X. Daura, and A. E. Mark, Encyclopedia of Computational Chemistry, 2 (2002).

  20. A. Farasat, F. Ra hbarizadeh, G. Hosseinzadeh, S. Sajjadi, M. Kamali, and A. H. Keihan, J. Biomol. Struct. Dynam., 35, No. 8, 1710–1728 (2017).

    Google Scholar 

  21. J. Min, X. Meng-X ia, Z. Dong, L. Yuan, L. Xiao-Yu, and C. Xing, J. Mol. Struct., 692, No. 1, 71–80 (2004).

    ADS  Google Scholar 

  22. G. Zhang, Q. Que, J. Pan, and J. Guo, J. Mol. Struct., 881, No. 1, 132–138 (2008).

    ADS  Google Scholar 

  23. C. N. Pace and J. M. Scholtz, Protein Struct.: A Practical Approach, 2, 299–321 (1997).

    Google Scholar 

  24. R. A. Deshpande, M. I. Khan, and V. Shankar, Biochim. Biophys. ActaProteins Proteomics, 1648, No. 1, 184–194 (2003).

    Google Scholar 

  25. H. Asghari, K. G. Chegini, A. Amini, and N. Gheibi, Int. J. Biol. Macromolecules, 84, 35–42 (2016).

    Google Scholar 

  26. Z. Chi, R. Liu, Y . Teng, X. Fang, and C. Gao, J. Agric. Food Chem., 58, No. 18, 10262–10269 (2010).

    Google Scholar 

  27. S. Patel and A. D atta, J. Phys. Chem. B, 111, No. 35, 10557–10562 (2007).

    Google Scholar 

  28. G. Zhang, B. Keit a, C. T. Craescu, S. Miron, P. de Oliveira, and L. Nadjo, J. Phys. Chem. B, 111, No. 38, 11253–11259 (2007).

    Google Scholar 

  29. M. Gokara, V. V. Narayana, V. Sadarangani, S. R. Chowdhury, S. Varkala, D. B. Ramachary, and R. Subra manyam, J. Biomol. Struct. Dynam., 35, No. 10, 2280–2292 (2017).

    Google Scholar 

  30. R. M. Abreu, H. J. Froufe, M. J. R. Queiroz, and I. C. Ferreira, Chem. Biol. Drug. Des., 79, No. 4, 530–534 (2012).

    Google Scholar 

  31. V. Mohan, A. C. G ibbs, M. D. Cummings, E. P. Jaeger, and R. L. DesJarlais, Curr. Pharm. Design, 11, No. 3, 323–333 (2005).

    Google Scholar 

  32. C. Cao, G. Wang, A. Liu, S. Xu, and L. Wang, S. Zou, Int. J. Mol. Sci., 17, No. 3, 333 (2016).

    Google Scholar 

  33. T. Awang, N. Wiri yatanakorn, P. Saparpakorn, D. Japrung, and P. Pongprayoon, J. Biomol. Struct. Dynam., 35, No. 4, 781–790 (2017).

    Google Scholar 

  34. G. P. Amini, F. G oshadrou, H. A. Ebrahim, P. Yaghmaei, and T. S. Hesami, Iran. Red. Cresc. Med. J., 19, No. 3, e40306 (2017).

    Google Scholar 

  35. M. C. Deller, L. Kong, and B. Rupp, Acta Crystallogr. F: Struct. Biol. Commun., 72, No. 2, 72–95 (2016).

    Google Scholar 

  36. P. Hammarströmand, B. H. Jonsson, Protein denaturation and the denatured state. Encyclopedia of Life Sciences, Wiley, New York (2005).

    Google Scholar 

  37. F. Rashid, S. Shar ma, and B. Bano, Protein J., 24, No. 5, 283–292 (2005).

    Google Scholar 

  38. W. K. Lim, J. Rösg en, and S. W. Englander, Proc. Natl. Acad. Sci., 106, No. 8, 2595–2600 (2009).

    ADS  Google Scholar 

  39. R. Capomaccio, I. O sório, I. Ojea-Jiménez, G. Ceccone, P. Colpo, D. Gilliland, R. Hussain, G. Siligardi, F. Rossi, and S. Ricard-Blum, Biointerphases, 11, No. 4, 04B310 (2016).

    Google Scholar 

  40. H. Xu, N. Yao, H. Xu, T. Wang, G. Li, and Z. Li, Int. J. Mol. Sci., 14, No. 7, 14185–14203 (2013).

    Google Scholar 

  41. J. W. Donovan, J. Bio l. Chem., 244, No. 8, 1961–1967 (1969).

    Google Scholar 

  42. B. Ahmad, S. Parveen, and R. H. Khan, Biomacromolecules, 7, No. 4, 1350–1356 (2006).

    Google Scholar 

  43. H. Zhang, P. Wu, Y. W ang, and J. Cao, Int. J. Biol. Macromol., 92, 593–599 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Gheibi.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 4, p. 666, July–August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chegini, K.G., Sadati, S.M., Rahbarimehr, A. et al. A Comprehensive Study on Theoretical and Experimental Effects of Nicotinic Acid and Picolinic Acid on the Structure and Stability of Human Serum Albumin. J Appl Spectrosc 86, 756–764 (2019). https://doi.org/10.1007/s10812-019-00890-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00890-6

Keywords

Navigation