Skip to main content
Log in

Faraday Effect and Magnetic Circular Dichroism in Media with Magneto-Plasmonic Nanoparticles and Two-Particle Clusters

  • Published:
Journal of Applied Spectroscopy Aims and scope

The Faraday rotation and magnetic circular dichroism (MCD) in media containing spherical layered nanoparticles with a ferromagnetic core and a plasmon shell or two-particle clusters consisting of ferromagnetic and plasmonic nanoparticles are studied theoretically. Optical absorption spectra, MCD spectra, the orientation angle of the polarization ellipse, and the ellipticity of the light wave are calculated for these systems in the quasistatic approximation of electrodynamics. It is shown that the magneto-optical response of media with magneto-plasmon inclusions depends on the size of the ferromagnetic component of the inclusion. Moreover, this dependence is more pronounced for layered particles, and the response in the region of plasmon resonance of the noble metal is greater than for two-particle clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Kruglyak, M. E. Portnoi, and R. J. Hicken, J. Nanophoton., 1, 013502 (2007).

    Article  Google Scholar 

  2. A. Kirilyuk, A. V. Kimel, and Th. Rasing, Rev. Mod. Phys., 82, 2731–2784 (2010).

    Article  ADS  Google Scholar 

  3. V. I. Belotelov, Plasmon Heterostructures and Photonic Crystals with Tunable Optical Properties [in Russian], Doctor′s Dissertation (in Physics and Mathematics), Moscow State University, Moscow (2012), pp. 12–16.

  4. G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, Adv. Opt. Mater., 7, 10–35 (2013).

    Article  Google Scholar 

  5. N. Passarelli, L. A. Perez, and E. A. Coronado, ACS Nano, 8, No. 10, 9723–9728 (2014)

    Article  Google Scholar 

  6. Y. Demidenko, D. Makarov, O. G. Schmidt, and V. Lozovski, J. Opt. Soc. Am. B, 28, 2115–2122 (2011).

    Article  ADS  Google Scholar 

  7. C. Hermann, V. A. Kosobukin, G. Lampel, J. Peretti, V. I. Safarov, and P. Bertrand, Phys. Rev. B, 64, 235422 (2001).

    Article  ADS  Google Scholar 

  8. E. Ferreiro-Vila, J. B. González-Díaz, R. Fermento, M. U. González, A. García-Martín, J. M. García-Martín, A. Cebollada, and G. Armelles, Phys. Rev. B, 80, 125132 (2009).

    Article  ADS  Google Scholar 

  9. R. K. Dani, H. Wang, S. H. Bossmann, G. Wysin, and V. Chikan, J. Chem. Phys., 135, 224502 (2011).

    Article  ADS  Google Scholar 

  10. P. Varytis, P. A. Pantazopoulos, and N. Stefanou, Phys. Rev. B, 93, 214423 (2016).

    Article  ADS  Google Scholar 

  11. B. Caballero, A. Garcıa-Martın, and J. C. Cuevas, Opt. Express, 23, No. 17, 22238–22249 (2015).

    Article  ADS  Google Scholar 

  12. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. Yakovlev, A. K. Zvezdin, and M. Bayer, Nature Nanotechnol., 6, 370–376 (2011).

    Article  ADS  Google Scholar 

  13. A. N. Kalish and V. I. Belotelov, Fiz. Tverd. Tel., 58, No. 8, 1513–1521 (2016).

    Google Scholar 

  14. M. Artemyev, R. Krutokhvostov, D. Melnikau, V. Oleinikov, A. Sukhanova, and I. Nabiev, Proc. SPIE, 8457, 845729 (2012).

    Article  Google Scholar 

  15. A. E. Sokolov, S. G. Ovchinnikov, V. N. Zabluda, A. M. Kalsin, and Ya. V. Zubavichus, Pisma ZhETF, 97, 104–107 (2013).

    Google Scholar 

  16. M. Kataja, S. Pourjamal, and S. Dijken, Opt. Express, 24, No. 4, 3562 (2016).

    Article  ADS  Google Scholar 

  17. P. Varytis and N. Stefanou, Opt. Commun., 360, 40–45 (2016).

    Article  ADS  Google Scholar 

  18. E. Umut, F. Pineider, P. Arosio, C. Sangregorio, M. Corti, F. Tabak, A. Lascialfari, and P. Ghigna, J. Magn. Magn. Mater., 324, 2373–2379 (2012).

    Article  ADS  Google Scholar 

  19. M. G. Kucherenko and V. M. Nalbandyan, Izv. Vyssh. Uchebn. Zaved., Fizika,59, No. 9, 87–93 (2016).

    Google Scholar 

  20. M. G. Kucherenko and V. M. Nalbandyan, Opt. Zh., 85, No. 9, 3–11 (2018).

    Google Scholar 

  21. M. G. Kucherenko, T. M. Chmereva, and E. K. Gadaeva, Zh. Prikl. Spektrosk., 81, No. 3, 396–401 (2014) [M. G. Kucherenko, T. M. Chmereva, and E. K. Gadaeva, J. Appl. Spectrosc., 81, 416–421 (2014)].

  22. M. G. Kucherenko and T. M. Chmereva, Coll. Sci. Works VII Int. Conf. on Photonics and Information Optics [in Russian], January 24–26, 2018, Moscow, NRNU MEPhI, 392–393 (2018).

  23. V. V. Klimov, Nanoplasmonics [in Russian], Fizmatlit, Moscow (2009), pp. 245–250.

    Google Scholar 

  24. M. G. Kucherenko and V. M. Nalbandyan, Phys. Proc., 73, 136–142 (2015).

    Article  ADS  Google Scholar 

  25. M. Kataja, S. Pourjamal, and S. van Dijken, Opt. Express, 24, 1–10 (2016).

    Article  Google Scholar 

  26. F. E. Moolekamp III and K. L. Stokes, IEEE Trans. Magn., 45, No. 10, 4888–4891 (2009).

    Article  ADS  Google Scholar 

  27. R. Atkinson and W. R. Hendr, J. Magn. Soc. Jpn., 20, No. S1, 291–296 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Chmereva.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 4, pp. 647–653, July–August 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chmereva, T.M., Kucherenko, M.G. Faraday Effect and Magnetic Circular Dichroism in Media with Magneto-Plasmonic Nanoparticles and Two-Particle Clusters. J Appl Spectrosc 86, 698–704 (2019). https://doi.org/10.1007/s10812-019-00881-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00881-7

Keywords

Navigation