Skip to main content
Log in

Investigation of the Regulatory Effect of 2-Hexadecenal on Neutrophils by the Chemiluminescence Method

  • Published:
Journal of Applied Spectroscopy Aims and scope

The effect of 2-hexadecenal on the formation of reactive oxygen and chlorine species (ROCS) in neutrophils stimulated to phagocytosis has been determined by the chemiluminescence method. It has been established that at low concentrations this aldehyde demonstrates a priming effect on the cells, enhancing ROCS production, and at higher concentrations — significantly suppresses this process. Comparison of the results of chemiluminescence and fluorescence analysis of the cell characteristics suggests that 2-hexadecenal is a signaling molecule, which exhibits the properties of the neutrophil function regulator by modifying intracellular signaling processes associated with changes in ROCS production, cytoskeleton reorganization, increase in the level of unbound calcium ions in the cytoplasm, reduction of mitochondrial membrane potential. It also induces apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Nathan, Nat. Rev. Immunol., 6, 173–182 (2006).

    Article  Google Scholar 

  2. T. N. Mayadas, X. Cullere, and C. A. Lowell, Annu. Rev. Pathol., 9, 181–218 (2014).

    Article  Google Scholar 

  3. B. Amulic, C. Cazalet, G. L. Hayes, K. D. Metzler, and A. Zychlinsky, Annu. Rev. Immunol., 30, 459–489 (2012).

    Article  Google Scholar 

  4. R. Grecian, M. K. B. Whyte, and S. R. Walmsley, Br. Med. Bul., 128, 5–14 (2018).

    Article  Google Scholar 

  5. A. C. Carr, C. L. Hawkins, S. R. Thomas, R. Stocker, and B. Frei, Free Radic. Biol. Med., 30, No. 5, 526–536 (2001).

    Article  Google Scholar 

  6. J. M. Robinson, Histochem. Cell Biol., 130, 281–297 (2008).

    Article  Google Scholar 

  7. J. Arnhold and J. Flemmig, Arch. Biochem. Biophys., 500, No. 1, 92–106 (2010).

    Article  Google Scholar 

  8. Yu. A. Vladimirov and Ye. V. Proskurnina, Uspekhi Biol. Khim., 49, 341–388 (2009).

    Google Scholar 

  9. T. Kuznetsova, T. Kulahava, I. Zholnerevich, N. Amaegberi, G. Semenkova, O. Shadyro, J. and Arnhold, Mol. Immunol., 87, 317–324 (2017).

  10. G. Semenkova, I. Zholnerevich, T. Kulahava, and Z. Kvacheva, Free Rad. Biol. Med., 120, Suppl. 1, S100 (2018).

  11. A. A. Krjukov, G. N. Semenkova, S. N. Cherenkevich, and V. Gerein, BioFactors, 26, 283–292 (2006).

    Article  Google Scholar 

  12. B. Halliwell, M. V. Clement, and L. H. Longa, FEBS Lett., 486, 10–13 (2000).

    Article  Google Scholar 

  13. M. M. Tarpey, D. A. Wink, and M. B. Grisham, Am. J. Physiol. Regul. Integr. Comp. Physiol., 286, 431–444 (2004).

    Article  Google Scholar 

  14. F. Caldefie-Che′zet, S. Walrand, C. Moinard, A. Tridon, J. Chassagne, and M.-P. Vasson, Clin. Chim. Acta, 319, 9–17 (2002).

    Article  Google Scholar 

  15. C. P. LeBel, H. Ischiropoulos, and S. C. Bondy, Chem. Res. Toxicol., 5, 227–231 (1992).

    Article  Google Scholar 

  16. M. Karlsson, T. Kurz, U. T. Brunk, S. E. Nilsson, and C. I. Frennesson, Biochem. J., 428, 183–190 (2010).

    Article  Google Scholar 

  17. S. L. Hempel, G. R. Buettner, Y. Q. O′Malley, D. A. Wessels, and D. M. Flaherty, Free Radic. Biol. Med., 27, 146–159 (1999).

  18. B. Kalyanaramana, V. Darley-Usmar, K. J. A. Davies, P. A. Dennery, H. J. Formanc, M. B. Grisham, G. E. Mann, K. Moore, L. J. Roberts II, and H. Ischiropoulos, Free Radic. Biol. Med., 52, No. 1, 1–6 (2012).

    Article  Google Scholar 

  19. N. Bartke and Y. A. Hannun, J. Lipid Res., 50, 591–596 (2009).

    Article  Google Scholar 

  20. O. Shadyro, A. Lisovskaya, G. Semenkova, I. Edimecheva, and N. Amaegberi, Lipid Insight., 8, 1–9 (2015).

  21. N. V. Amaegberi, G. N. Semenkova, A. G. Lisovskaya, Z. B. Kvacheva, and O. I. Shadyro, Biofizika, 64, No. 3, 544–551 (2019).

    Google Scholar 

  22. N. V. Amaegberi, G. N. Semenkova, Z. B. Kvacheva, A. G. Lisovskaya, S. V. Pinchuk, and O. I. Shadyro, Cell Biochem. Funct., 1–9 (2019).

  23. A. Kumar, H. S. Byun, R. Bittman, and J. Saba, Cell Signal., 23, 1144–1152 (2011).

    Article  Google Scholar 

  24. Z. Liu, Y. Gong, H. S. Byun, and R. Bittman, New J. Chem., 34, 470–475 (2010)

    Article  Google Scholar 

  25. A. Böyum, Scand. J. Immunol., 5, 9–15 (1976).

    Article  Google Scholar 

  26. F. Kato, M. Tanaka, and K. Nakamura, Toxicol. in Vitro, 13, 923–929 (1999).

    Article  Google Scholar 

  27. D. Shugar, Biochim. Biophys. Acta, 8, 302–309 (1952).

    Article  Google Scholar 

  28. F. Sivandzade, A. Bhalerao, and L. Cucullo, Bio. Protoc., 9, No. 1, 1–13 (2019).

    Article  Google Scholar 

  29. R. A. Hirst, C. Harrison, K. Hirota, and D. G. Lambert, Methods in Molecular Biology, Calcium Signaling Protocols, 2nd edn., Humana Press Inc., Totowa (1997), pp. 37–45.

  30. A. Ishaque and M. Al-Rubeai, In: Methods in Biotechnology, Animal Cell Biotechnology, Methods and Protocols, 2nd edn., Humana Press Inc., Totowa (2007), pp. 285–299.

    Chapter  Google Scholar 

  31. A. I. Kavalenka, G. N. Semenkova, and S. N. Cherenkevich, Cell Tissue Biol., 1, No. 6, 551–559 (2007).

    Article  Google Scholar 

  32. J. Zhang, X. Wang, V. Vikash, Q. Ye, D. Wu, Y. Liu, and W. Dong, Oxid. Med. Cell. Longev. (2016); ID 4350965, https://doi.org/10.1155/2016/4350965.

    Google Scholar 

  33. A. Mo′csai, B. Walzog, and C. A. Lowell, Cardiovasc. Res., 107, 373–385 (2015).

    Article  Google Scholar 

  34. B. M. Babior, J. D. Lambeth, and W. Nauseef, Arch. Biochem. Biophys., 397, 342–344 (2002).

    Article  Google Scholar 

  35. B. Samuelsson, Z. Rheumatol., 50, Suppl. 1, 3–6 (1991).

  36. V. S. Hanna and E. A. A. Hafez, J. Adv. Res., 11, 23–32 (2018).

    Article  Google Scholar 

  37. K. Futosi, S. Fodor, and A. Mócsai, Int. Immunopharmacol., 17, 638–650 (2013).

    Article  Google Scholar 

  38. M. Reyes-Reyes, N. Mora, A. Zentella, and C. Rosales, J. Cell Sci., 114, 1579–1589 (2001).

  39. A. Bertram and K. Ley, Arch. Immunol. Ther. Exp. (Warsz), 59, No. 2, 79–87 (2011).

    Article  Google Scholar 

  40. G. Huang, L. Z. Shi, and H. Chi, Cytokine, 48, No. 3, 161–169 (2009).

    Article  Google Scholar 

  41. D. Kim and C. L. Haynes, Analyst, 138, No. 22, 1–17 (2013).

    Article  Google Scholar 

  42. S. Elmore, Toxicol. Pathol., 35, 495–516 (2007).

    Article  Google Scholar 

  43. P. Pinton, C. Giorgi, R. Siviero, E. Zecchini, and R. Rizzuto, Oncogen., 27, No. 50, 6407–6418 (2008).

    Article  Google Scholar 

  44. E. A. Papakonstanti and C. Stournaras, FEBS Lett., 582, 2120–2127 (2008).

    Article  Google Scholar 

  45. G. Forgacs, S. H. Yook, P. A. Janmey, H. Jeong, and C. G. Burd, J. Cell Sci., 117, 2769–2775 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Amaegberi.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 4, pp. 582–589, July–August 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amaegberi, N.V., Semenkova, G.N., Lisovskaya, A.G. et al. Investigation of the Regulatory Effect of 2-Hexadecenal on Neutrophils by the Chemiluminescence Method. J Appl Spectrosc 86, 636–642 (2019). https://doi.org/10.1007/s10812-019-00871-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00871-9

Keywords

Navigation