Skip to main content
Log in

Development and Validation of an UV Spectrophotometric Method for Determination of Thiamphenicol in Dosage Form

  • Published:
Journal of Applied Spectroscopy Aims and scope

A novel UV spectrophotometric method has been developed for the determination of thiamphenicol in a solid dosage form. The spectrophotometric detection was carried out at an absorption maximum wavelength of 224 nm using water as a solvent. The method was validated for specificity, linearity, precision, accuracy, robustness, and limit of detection (LOD) and limit of quantitation (LOQ). The detector response for thiamphenicol was linear in the selected concentration range of 5 to 25 μg/mL with a correlation coefficient of 0.9975. The precision (RSD) among six sample preparations was 0.65 and 1.50 % for analysts 1 and 2, respectively. The average recovery was 99.91 ± 0.65%. The LOD and LOQ were respectively 0.59 and 1.99 μg/mL. The results demonstrated that the excipients in thiamphenicol soft capsules did not interfere with the spectrophotometric determination of the drug. Using the Youden and Steiner approach, the method proved to be robust. The proposed method can be conveniently employed for routine analysis of thiamphenicol in bulk drug and soft capsules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Fuglesang and T. Bergan, Antibiot. Chemother., 31, 1–21 (1982).

    Google Scholar 

  2. W. Belda, L. F. Siqueira, and L. J. Fagundes, Rev. Inst. Med. Trop., Sao Paulo, 42, 133–135 (2000).

    Article  Google Scholar 

  3. V. Tullio, A. Cuffini, N. Mandras, J. Roana, G. Banche, D. Ungheri, and N. Carlone, Int. J. Antimicrob. Agents, 24, 381–385 (2004).

    Article  Google Scholar 

  4. J. A. Turton, C. M. Andrews, A. C. Havard, S. Robinson, M. York, T. C. Williams, and F. M. Gibson, Food Chem. Toxicol., 40, 1849–1861 (2002).

    Article  Google Scholar 

  5. J. A. Turton, A. C. Havard, S. Robinson, D. E. Holt, C. M. Andrews, R. Fagg, and T. C. Williams, Food Chem. Toxicol., 38, 925–938 (2000).

    Article  Google Scholar 

  6. Z. Wang, H. Yang, W. Sun, C. K. Huang, X. Cui, X. J. Qiu, Q. Q. Lian, and Z. S. Wang, J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci., 967, 235–239 (2014).

    Article  Google Scholar 

  7. T. L. Fodey, S. E. George, I. M. Traynor, P. Delahaut, D. G. Kennedy, C. T. Elliott, and S. R. Crooks, J. Immunol. Methods, 393, 30–33 (2013).

    Article  Google Scholar 

  8. D. Tian, F. Feng, Y. Li, J. Yang, X. Tian, and F. Mo, J. Pharmaceut. Biomed. Anal., 48, 1015–1019 (2008).

    Article  Google Scholar 

  9. P. Lu o, X. Chen, C. Liang, H. Kuang, L. Lu, Z. Jiang, Z. Wang, C. Li, S. Zhang, and J. Shen, J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci., 878, 207–212 (2010).

    Article  Google Scholar 

  10. S. Zhang, Z. Liu, X. Guo, L. Cheng, Z. Wang, and J. Shen, J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci., 875, 399–404 (2008).

    Article  Google Scholar 

  11. X. Chen, Z. Yue, C. Ji, and S. Liang, Chin. J. Chromatogr., 23, 92–95 (2005).

    ADS  Google Scholar 

  12. J. Shen, X. Xia, H. Jiang, C. Li, J. Li, X. Li, and S. Ding, J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci., 877, 1523–1529 (2009).

    Article  Google Scholar 

  13. P. Li, Y. Qiu, H. Cai, Y. Kong, Y. Tang, D. Wang, and M. Xie, Chin. J. Chromatogr., 24, 14–18 (2016).

    Article  Google Scholar 

  14. A. P. Pfenning, J. E. Roybal, H. S. Rupp, S. G. Turnipseed, S. A. Gonzales, and J. A. Hurlbut, J. AOAC Int., 83, 26–30 (2000).

    Google Scholar 

  15. C. A. Franje, S. K. Chang, C. L. Shyu, J. L. Davis, Y. W. Lee, R. J. Lee, C. C. Chang, and C. C. Chou, J. Pharm. Biomed. Anal., 53, 869–877 (2010).

    Article  Google Scholar 

  16. N. Liu, S. Sijak, M. Zheng, L. Tang, G. Xu, and M. Wu, Chem. Eng. J., 260, 826–834 (2015).

    Article  Google Scholar 

  17. G. Pajchel, K. Michalska, R. German, and S. Tyski, Chromatographia, 68, 587–591 (2008).

    Article  Google Scholar 

  18. N. Rajendraprasad and K. Basavaiah, J. Appl. Spectrosc.,81, 127–133 (2014).

    Article  ADS  Google Scholar 

  19. N. Rajendraprasad and K. Basavaiah, J. Appl. Spectrosc., 82, 513–519 (2015).

    Article  ADS  Google Scholar 

  20. A. K. Sahu and V. Jain, J. Appl. Spectrosc., 83, 878–887 (2016).

    Article  ADS  Google Scholar 

  21. N. Swamy and K. Basavaiah, J. Appl. Spectrosc., 84, 694–703 (2017).

    Article  ADS  Google Scholar 

  22. International Conference on Hormonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonised Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology Q2(R 1), Complementary Guideline on Methodology dated 06 November 1996, incorporated in November 2005, London.

  23. W. Horwitz, Official Methods of Analysis of AOAC International, Gaithersburg, MD, AOAC International (2002).

  24. E. Karageorgou and V. Samanidou, J. Chromatogr. A, 1353, 131–139 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. C. G. De Oliveira.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 4, pp. 575–581, July–August, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, Y.A., De Oliveira, C.L.C.G. Development and Validation of an UV Spectrophotometric Method for Determination of Thiamphenicol in Dosage Form. J Appl Spectrosc 86, 629–635 (2019). https://doi.org/10.1007/s10812-019-00870-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00870-w

Keywords

Navigation