Sensitive Analysis of Copper in Water by LIBS–LIF Assisted by Simple Sample Pretreatment

Laser-induced breakdown spectroscopy (LIBS) combined with laser-induced fluorescence (LIF) is applied to realize sensitive analysis of trace copper in water for the first time. A wood slice substrate is selected as water absorber to convert liquid sample analysis to solid sample analysis to eliminate drawbacks of the water matrix in direct analysis of liquid samples by the LIBS or LIBS–LIF technique. Copper atoms in the laser-induced plasma are resonantly excited at 324.75 nm from the ground state to a higher state with a tunable dye laser. The fluorescence of copper atoms from this higher state to a lower state at 510.55 nm is selectively monitored with high detection sensitivity. A calibration curve of copper in water analyzed with the LIBS–LIF technique has been built and the limit of detection reaches 3.6 ppb, which is 4–5 orders better than that obtained in direct analysis of aqueous solutions by the LIBS technique. The combination of this simple sample pretreatment method with the LIBS–LIF technique demonstrates rapid, sensitive, and reliable analysis of trace copper in water.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Agency for Toxic Substances and Disease Registry (ATSDR). 2004. Toxicological Profile for Copper. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

  2. 2.

    S. Baytak and V. T. Kasumov, Anal. Lett., 50, 105–116 (2017).

    Article  Google Scholar 

  3. 3.

    E. I. Muller, C. C. Muller, J. P. Souza, A. L. H. Muller, M. S. P. Enders, M. Doneda, A. C. Frohlich, G. D. Iop, and K. F. Anschau, Microchem. J., 134, 257–261 (2017).

    Article  Google Scholar 

  4. 4.

    L. S. G. Teixeira, E. S. Santos, and L. S. Nunes, Anal. Chim. Acta, 722, 29–33 (2012).

    Article  Google Scholar 

  5. 5.

    P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, Anal. Chim. Acta, 429, 269–278 (2001).

    Article  Google Scholar 

  6. 6.

    N. Aras, S. U. Yesiller, D. A. Ates, and S. Yalcin, Spectrochim. Acta, B, 7475, 87–94 (2012).

  7. 7.

    H. Sobral, R. Sanginés, and A. Trujillo-Vázquez, Spectrochim. Acta, B, 78, 62–66 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    N. E. Schmidt and S. R. Goode, Appl. Spectrosc., 56, 370–374 (2002).

    ADS  Article  Google Scholar 

  9. 9.

    Q. Y. Lin, X. D. Han, J. Wang, Z. M. Wei, K. P. Liu, and Y. X. Duan, J. Anal. At. Spectrom., 31, 1622–1630 (2016).

    Article  Google Scholar 

  10. 10.

    R. L. Vander Wal, T. M. Ticich, J. R. West, and P. A. Householder, Appl. Spectrosc., 53, 1226–1236 (1999).

    ADS  Article  Google Scholar 

  11. 11.

    Z. J. Chen, H. K. Li, M. Liu, and R. H. Li, Spectrochim. Acta, B, 63, 64–68 (2008).

    ADS  Article  Google Scholar 

  12. 12.

    Y. Lee, S. W. Oh, and S. H. Han, Appl. Spectrosc., 66, 1385–1396 (2012).

    ADS  Article  Google Scholar 

  13. 13.

    R. A. Rezk, A. H. Galmed, M. Abdelkreem, N. A. Abdel Ghany, and M. A. Harith, Opt. Laser Technol., 83, 131–139 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Q. Y. Lin, F. Bian, Z. M. Wei, S. Wang, and Y. X. Duan, J. Anal. At. Spectrom., 32, 1412–1419 (2017).

    Article  Google Scholar 

  15. 15.

    Z. J. Chen, H. K. Li, F. Zhao, and R. H. Li, J. Anal. At. Spectrom., 23, 871–875 (2008).

    Article  Google Scholar 

  16. 16.

    F. Zhao, Z. M. Chen, F. P. Zhang, R. H. Li, and J. Y. Zhou, Anal. Methods, 2, 408–414 (2010).

    Article  Google Scholar 

  17. 17.

    Y. L. Yu, W. D. Zhou, and X. J. Su, Opt. Commun., 333, 62–66 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    K. Skocovska, J. Novotny, D. Prochazka, P. Porizka, K. Novotny, and J. Kaiser, Rev. Sci. Instrum., 87, 043116 (2016).

  19. 19.

    S. K. Ho and N. H. Cheung, Anal. Chem., 77, 193–199 (2005).

    Article  Google Scholar 

  20. 20.

    X. C. Wang, Z. Y. Huang, P. C. Chu, Y. Cai, K. S. Y. Leung, J. T. S. Lumc, and N. H. Cheung, J. Anal. At. Spectrom., 31, 2363–2374 (2016).

    Article  Google Scholar 

  21. 21.

    S. K. Ho and N. H. Cheung, Appl. Phys. Lett., 87, 264104 (2005).

    ADS  Article  Google Scholar 

  22. 22.

    . F. Hilbk-Kortenbruck, R. Noll, P. Wintjens, H. Falk, and C. Becker, Spectrochim. Acta, B, 56, 933–945 (2001).

    ADS  Article  Google Scholar 

  23. 23.

    Y. Godwal, S. L. Lui, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, Spectrochim. Acta, B, 62, 1443–1447 (2007).

    ADS  Article  Google Scholar 

  24. 24.

    S. L. Lui, Y. Godwal, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, Anal. Chem., 80, 1995–2000 (2008).

    Article  Google Scholar 

  25. 25.

    S. Laville, C. Goueguel, H. Loudyi, F. Vidal, M. Chaker, and M. Sabsabi, Spectrochim. Acta, B, 64, 347–353 (2009).

    ADS  Article  Google Scholar 

  26. 26.

    . H. Loudyi, K. Rifai, S. Laville, F. Vidal, M. Chaker, and M. Sabsabi, J. Anal. At. Spectrom., 24, 1421–1428 (2009).

    Article  Google Scholar 

  27. 27.

    J. Kang, R. H. Li, Y. R. Wang, Y. Q. Chen, and Y. X. Yang, J. Anal. At. Spectrom., 32, 2292–2299 (2017).

    Article  Google Scholar 

  28. 28.

    X. K. Shen, H. Wang, Z. Q. Xie, Y. Gao, H. Ling, and Y. F. Lu, Appl. Opt., 48, 2551–2558 (2009).

    ADS  Article  Google Scholar 

  29. 29.

    C. M. Li, Z. Q. Hao, Z. M. Zou, R. Zhou, J. M. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, Opt. Express, 24, 7850–7857 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    J. M. Li, L. B. Guo, N. Zhao, X. Y. Yang, R. X. Yi, K. H. Li, Q. D. Zeng, X. Y. Li, X. Y. Zeng, and Y. F. Lu, Talanta, 151, 234–238 (2016).

    Article  Google Scholar 

  31. 31.

    R. X. Yi, J. M. Li, X. Y. Yang, R. Zhou, H. W. Yu, Z. Q. Hao, L. B. Guo, X. Y. Li, X. Y. Zeng, and Y. F. Lu, Anal. Chem., 89, 2334–2337 (2017).

    Article  Google Scholar 

  32. 32.

    J. M. Li, Z. Q. Hao, N. Zhao, R. Zhou, R. X. Yi, S. S. Tang, L. B. Guo, X. Y. Li, X. Y. Zeng, and Y. F. Lu, Opt. Express, 25, 4945–4951 (2017).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. H. Li.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 2, p. 326, March–April, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.R., Kang, J., Chen, Y.Q. et al. Sensitive Analysis of Copper in Water by LIBS–LIF Assisted by Simple Sample Pretreatment. J Appl Spectrosc 86, 353–359 (2019). https://doi.org/10.1007/s10812-019-00825-1

Download citation

Keywords

  • laser-induced breakdown spectroscopy
  • laser-induced fluorescence
  • wood slice
  • copper in water
  • sensitive detection