Skip to main content

Advertisement

Log in

Determination of Labile and Structurally Bound Trace Elements of Bone Tissue by Atomic Absorption Spectrometry

  • Published:
Journal of Applied Spectroscopy Aims and scope

A method of chemical separation of the components of bone tissue, based on their selective solubility, with the subsequent determination of trace elements by atomic absorption spectrometry, is proposed. The total concentrations of Mg, Zn, Fe, Sr, Cu, Mn, and Pb, and the concentrations of these elements in solutions with pH 6.5, 10, and 12 after their interaction with the bone preparation were determined. The obtained concentrations of the “soluble” fractions of trace elements are critically analyzed taking into account the possible reactions of formation and precipitation in alkaline solutions of new insoluble phases. Based on the obtained data, the ability of elements to form mobile fractions in the composition of bone tissue can be represented as follows: Mg > Zn ≥ Fe > Sr > Cu. At the same time, noncrystalline Mg is predominantly localized in water or biological liquids of the bone, and noncrystalline Zn — in the alkali-soluble organic component of the bone. Pb and Mn are practically not detected in solutions, i.e., localized in the crystalline phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Legros, N. Balmain, and G. Bonel, J. Chem. Res., 77, 2313–2317 (1986).

    Google Scholar 

  2. C. Ray, Biomaterials, 15, 433–437 (1990).

    Google Scholar 

  3. J. C. Elliott, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates/Studies in Inorganic Chemistry 18, Elsevier, Amsterdam (1994).

  4. B. Wopenka and J. D. Pasteris, Mater. Sci. Eng. C, 25, 131–143 (2005).

    Article  Google Scholar 

  5. J. M. Hughes and J. Rakovan, Rev. Mineral. Geochem., 48, 1–12 (2002).

    Article  Google Scholar 

  6. C. Combes, S. Cazalbou, and C. Ray, Minerals, 6, 34 (2016).

    Article  Google Scholar 

  7. J. D. Pasteris, Am. Mineralogist, 101, 2594–2610 (2016).

    Article  ADS  Google Scholar 

  8. S. Cazalbou, C. Combes, D. Eichert, et al., J. Mater. Chem., 14, 2148–2153 (2004).

    Article  Google Scholar 

  9. C. G. Frankær, A. C. Raffalt, and K. Stahl, Calcif Tissue Int., 94, 248–257 (2014).

    Article  Google Scholar 

  10. S. N. Danilchenko, Zh. Nano- Electron. Fiz., 3, 03043-1–03043-5 (2013).

    Google Scholar 

  11. D. Bazin, A. Dessombz, C. Nguyen, H. K. Ea, F. Lioté, J. Rehr, C. Chappard, S. Rouzière, D. Thiaudière, S. Reguer, and M. Daudon, J. Synchrotron Radiat., 21, 136–142 (2014).

    Article  Google Scholar 

  12. F. Meirer, B. Pemmer, G. Pepponi, N. Zoeger, P. Wobrauschek, S. Sprio, A. Tampieri, J. Goettlicher, R. Steininger, S. Mangold, P. Roschger, A. Berzlanovich, J. G. Hofstaetter, and C. Streliet, J. Synchrotron Radiat., 18, 238–244 (2011).

    Article  Google Scholar 

  13. A. Dessombz, C. Nguyen, H. K. Ea, S. Rouzière, E. Foy, D. Hannouche, S. Réguer, F.-E. Picca, D. Thiaudière, F. Lioté, M. Daudon, and D. Bazin, J. Trace Element. Med. Biol., 27, 326–333 (2013).

    Article  Google Scholar 

  14. D. Bazin, X. Carpentier, I. Brocheriou, P. Dorfmuller, S. Aubert, C. Chappard, D. Thiaudière, S. Reguer, G. Waychunas, P. Jungers, and M. Daudon, Biochimie, 91, 1294–1300 (2009).

    Article  Google Scholar 

  15. H. M. Kim, C. Rey, and M. J. Glimcher, J. Bone Miner Res., 10, 1589–1601 (1995).

    Article  Google Scholar 

  16. H. M. Kim, C. Rey, and M. J. Glimcher, Calcif Tissue Int., 59, 58–63 (1996).

    Article  Google Scholar 

  17. S. J. Eppell, W. Tong, J. L. Katz, L. Kuhn, and M. J. Glimcher, J. Orthop. Res., 19, 1027–1034 (2001).

    Article  Google Scholar 

  18. S. N. Danilchenko, A. N. Kulik, P. A. Pavlenko, T. G. Kalinichenko, O. M. Buhay, I. I. Chemeris, and L. F. Sukhodub, Zh. Prikl. Spektrosk., 73, 385–391 (2006) [S. N. Danilchenko, A. N. Kulik, P. A. Pavlenko, T. G. Kalinichenko, O. M. Buhay, I. I. Chemeris, and L. F. Sukhodub, J. Appl. Spectrosc., 73, 437–443 (2006)].

  19. D. A. Bushinsky, K. L. Gavrilov, J. M. Chabala, and R. Levi-Setti, J. Bone Miner. Res., 15, 2026–2032 (2000).

    Article  Google Scholar 

  20. L. Wang and G. H. Nancollas, Chem. Rev., 108, 4628–4669 (2008).

    Article  Google Scholar 

  21. I. Khavezov and D. Tsalev, Atomic Absorption Analysis [in Russian], Khimiya, Leningrad (1983).

  22. Yu. Yu. Lurie, Handbook of Analytical Chemistry [in Russian], Mir, Moscow (1979).

  23. W. Hoffman, Guide to Inorganic Synthesis [in Russian], 6, Mir, Moscow (1986).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Danilchenko.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 2, pp. 245–255, March–April, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danilchenko, S.N., Rogulsky, Y.V., Kulik, A.N. et al. Determination of Labile and Structurally Bound Trace Elements of Bone Tissue by Atomic Absorption Spectrometry. J Appl Spectrosc 86, 264–269 (2019). https://doi.org/10.1007/s10812-019-00810-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00810-8

Keywords

Navigation