Skip to main content
Log in

Electron Paramagnetic Resonance of Mn2+ Ions in Nanosized Zinc Sulfide with a Planar Lattice Fault

  • BRIEF COMMUNICATIONS
  • Published:
Journal of Applied Spectroscopy Aims and scope

We have studied the EPR of Mn2+ ions in three samples of cubic nano-ZnS made by different technologies and having different nanoparticle sizes. Manganese occurs in the samples as an uncontrolled impurity. The EPR spectra can be described by two components: the spectrum of the Mn2+ in a cubic environment (Mn2+(C)) with parameters g = 2.0022 ± 0.0002, A = (–63.5 ± 0.5)·10–4 cm–1, 0 b4 ≥ 3.5·10–4 cm–1; and the spectrum of the Mn2+ ion associated with a planar lattice stacking fault (Mn2+ (F)), with parameters g = 2.0022 ± 0.0002, A = (–63.5 ± 0.5)·10–4 cm–1, \( {b}_2^0 \) = (–36 ± 1)·10–4 cm–1. The ratio of the number of centers Mn2+(C)/Mn2+(F) is 2.1:1 for sample 1 and 1.7:1 for samples 2 and 3. Planar stacking faults are typical lattice faults for cubic nano-ZnS. EPR of the Mn2+ ions lets us monitor the presence of these ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science, 281, 2013–2016 (1998).

    Article  ADS  Google Scholar 

  2. B. T. Luong, E. Hyeong, S. Yoon, J. Choi, and N. Kim, RSC Adv., 3, 23395–23401 (2013).

    Article  Google Scholar 

  3. D. Bera, L. Qian, T.-K. Tseng, and P. H. Holloway, Rev. Mater., 3, 2260–2345 (2010).

    Google Scholar 

  4. C. Vatankhah and A. Ebadi, J. Rec. Sci., 2, 21–24 (2013).

    Google Scholar 

  5. S. B. Qadri, E. F. Skelton, D. Hsu, A. D. Dinsmore, J. Yang, H. F. Gray, and B. R. Ratna, Phys. Rev. B, 60, 9191 (1999).

    Article  ADS  Google Scholar 

  6. A. D. Dinsmore, D. S. Hsu, S. B. Qadri, J. O. Cross, T. A. Kennedy, H. F. Gray, and B. R. Ratna, J. Appl. Phys., 88, 4985–4993 (2000).

    Article  ADS  Google Scholar 

  7. R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, Phys. Rev. Lett., 72, 416–419 (1994).

    Article  ADS  Google Scholar 

  8. A. D. Dinsmore, D. S. Hsu, H. F. Gray, S. B. Qadri, Y. Tian, and B. R. Ratna, Appl. Phys. Lett., 75, 802 (1999).

    Article  ADS  Google Scholar 

  9. P. A. Gonzalez Beermann, B. R. McGarvey, S. Muralidharan, and R. C. W. Sung, Chem. Mater., 16, 915–918 (2004).

    Article  Google Scholar 

  10. R. Kripal and A. Kumar Gupta, Chalcogenide Lett., 7, 203–209 (2010).

    Google Scholar 

  11. G. Murugadoss and V. Ramasamy, Spectrochim. Acta A, 93, 70–74 (2012).

    Article  ADS  Google Scholar 

  12. S. V. Nistor, M. Stefan, D. Ghica, and L. C. Nistor, Rad. Measur., 56, 40–43 (2013).

    Article  Google Scholar 

  13. S. V. Nistor, M. Stefan, L. C. Nistor, D. Ghica, C. D. Mateescu, and J. N. Barascu, Mater. Sci. Eng., 15, 012024 (2010).

    Google Scholar 

  14. V. Nosenko, I. Vorona, V. Grachev, S. Ishchenko, N. Baran, Y. Becherikov, A. Zhuk, Y. Polishchuk, V. Kladko, and A. Selishchev, Nanoscale Res. Lett., 11, 517 (2016).

  15. A. V. Selishchev and V. V. Pavlishchuk, Theor. Exp. Chem., 51, 366–374 (2016).

    Article  Google Scholar 

  16. G. Grachev, www.visual-epr.com.

  17. V. G. Grachev and Yu. G. Semenov, Methods of computer treatment of EPR and ENDOR spectra, in: Radiospectroscopy, Perm (1983); pp. 163–171.

  18. S. A. Al′tshuler and B. M. Kozyrev, Electron Paramagnetic Resonance of Compounds Containing Intermediate Group Elements, 2nd edn., rev. [in Russian], Nauka, Moscow (1972).

  19. C. Rudowicz and S. K. Misra, Appl. Spectrosc. Rev., 36, 11–63 (2001).

    Article  ADS  Google Scholar 

  20. R. S. Title, Phys. Rev., 131, 2503–2504 (1963).

    Article  ADS  Google Scholar 

  21. S. P. Keller, I. L. Gelles, and W. V. Smith, Phys. Rev., 110, 850–855 (1958).

    Article  ADS  Google Scholar 

  22. I. P. Vorona, V. G. Grachev, S. S. Ishchenko, N. P. Baran, Yu. Yu. Bacherikov, A. G. Zhuk, and V. V. Nosenko, Zh. Prikl. Spektrosk., 83, 60–64 (2016) [I. P. Vorona, V. G. Grachev, S. S. Ishchenko, N. P. Baran, Yu. Yu. Bacherikov, A. G. Zhuk, and V. V. Nosenko, J. Appl. Spectrosc., 83, 51–55 (2016) (English translation)].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Vorona.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 1, pp. 146–150, January–February, 2019.

N. P. Baran is deceased

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorona, I.P., Ishchenko, S.S., Grachev, V.G. et al. Electron Paramagnetic Resonance of Mn2+ Ions in Nanosized Zinc Sulfide with a Planar Lattice Fault. J Appl Spectrosc 86, 130–133 (2019). https://doi.org/10.1007/s10812-019-00792-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00792-7

Keywords

Navigation