Advertisement

Journal of Applied Spectroscopy

, Volume 86, Issue 1, pp 67–71 | Cite as

Preparation and Characterization of the Mechanical Properties of TiO2/Epoxy Resin Nanocomposites by Differential Scanning Calorimetry and Raman Spectroscopy

  • L. MeradEmail author
  • M. Bouchaour
  • M. J. M. Abbadie
  • B. Benyoucef
Article
  • 9 Downloads

The aim of this work is to establish the correlation between differential scanning calorimetry and Raman spectroscopy in the determination of the mechanical properties of TiO2/epoxy resin nanocomposites. Commercial RTM6 epoxy resin with TiO2 nanoparticles of 21 nm in diameter is used. Magnetic stirring for 5, 30, and 60 min is employed for the preparation of this epoxy. The rate of the reticulation of epoxy is reinforced by different percentages of TiO2 nanoparticles and is strongly affected by the cure temperature. The results indicate that the 1255 cm–1 peak intensity, corresponding to the C–C stretch, decreases during the cure leading to the variation of the mechanical properties (hardness) of the nanocomposites.

Keywords

epoxy resin hardness differential scanning calorimetry Raman spectroscopy TiO2 nanocomposite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Guozhen, R. J. Brian, and M. L. Robertson, Green Materials, 1, 125–134 (2013).CrossRefGoogle Scholar
  2. 2.
    H. Hansmann, ASM Handbook/extraction, 21, 692–698 (2003).Google Scholar
  3. 3.
    J. F. Aust, K. S. Booksh, C. M. Stellma, N. R. S. Parnas, and M. L. Myrick, Appl. Spectrosc., 51, No. 2, 247–252 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    S. C. Lin and E. M. Pearce, High-Performance Thermosets – Chemistry, Properties and Applications, Carl Hanser Publisher, Munich (1994).Google Scholar
  5. 5.
    L. Merad, M. Cochez, S. Margueron, F. Jauchem, M. Ferriol, B. Benyoucef, and P. Bourson, Polym. Test., 28, 42–47 (2009).CrossRefGoogle Scholar
  6. 6.
    L. Merad, B. Benyoucef, M. J. M. Abadie, and J. P. Charles, Exp. Tech., 38, 37–42 (2014).CrossRefGoogle Scholar
  7. 7.
    R. Hardis, Cure Kinetics Characterization and Monitoring of an Epoxy Resin for Thick Composite Structures, Master of Science thesis, Iowa State University (2012). Google Scholar
  8. 8.
    V. Hana and K. Vojtěch, Recent Res. Autom. Control, 3, 357–361 (2014).Google Scholar
  9. 9.
    D. Puglia, L. Valentini, and J. M. Kenny, J. Appl. Polym. Sci., 88, 452–458 (2003).CrossRefGoogle Scholar
  10. 10.
    K. C. Hong, T. M. Vess, R. E. Lyon, and M. L. Myrick, Proc. 38th Int. Soc. Advancement of Material and Process Engineering (SAMPE), May 10–13, 1993, California, USA, 1–12 (1993).Google Scholar
  11. 11.
    B. Ellis, Chemistry and Technology of Epoxy Resins, Blakie Academic Professional (1993).Google Scholar
  12. 12.
    B. Degamber and G. F. Fernando, MRS Bull., 5, 370–380 (2002).CrossRefGoogle Scholar
  13. 13.
    C. B. Ng, L. S. Scbadler, and R. W. Siegel, NanoStruct. Mater., 12, 507–510 (1999).CrossRefGoogle Scholar
  14. 14.
    A. Naceri and A. Vautrin, Afrique Sci., 2, 131–141 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • L. Merad
    • 1
    Email author
  • M. Bouchaour
    • 1
  • M. J. M. Abbadie
    • 2
  • B. Benyoucef
    • 1
  1. 1.Université de Tlemcen, Faculté des Sciences, Département de Physique Unité de Recherche “Matériaux et Energies Renouvelables”TlemcenAlgeria
  2. 2.School of Materials Science & EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations