Skip to main content
Log in

Transformation and Formation of Radiation-Induced Point Defects in Irradiated Lithium Fluoride Crystals After Their Mechanical Fragmentation

  • Published:
Journal of Applied Spectroscopy Aims and scope

Changes in the concentrations of ordinary radiation defects and formation of near-cluster radiation defects (color centers) are shown to occur in nanocrystals fabricated by mechanical fragmentation of irradiated LiF crystals. Concentrations of near-cluster color centers increase to a steady value after fragmentation and remain constant at room temperature for a long time. UV irradiation of fabricated nanocrystals after termination of center formation processes in them causes the concentration of near-cluster defects containing three anion vacancies and two electrons to increase significantly. It is demonstrated that there are single-vacancy color centers as well as ordinary and near-cluster aggregate centers in unirradiated nanocrystals fabricated by fragmentation of unirradiated crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. B. Fowler, Physics of Color Centers, Academic Press, New York (1968).

    Google Scholar 

  2. J. Nahum, Phys. Rev., 158, 814–825 (1967).

    Article  ADS  Google Scholar 

  3. F. Agullo-Lopez, C. R. A. Catlow, and P. D. Townsend, Point Defects in Materials, Academic Press, London (1988).

    Google Scholar 

  4. V. Kozlovski and V. Abrosimova, Radiation Defect Engineering (Selected Topics in Electronics and Systems), World Scientific, Singapore (2005).

    Google Scholar 

  5. P. Lecoq, A. Gektin, and M. Korzhik, Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering, Springer, Berlin (2017).

    Book  Google Scholar 

  6. C. Furetta, Handbook of Thermoluminescence, World Scientific, Singapore (2003).

    Book  Google Scholar 

  7. H. Mattoussi, G. Palui, and H. B. Na, Adv. Drug Deliv. Rev., 64, No. 2, 138–166 (2012).

    Article  Google Scholar 

  8. W. R. Algar, D. Wegner, A. L. Huston, J. B. Blanco-Canosa, M. H. Stewart, A. Armstrong, P. E. Dawson, N. Hildebrandt, and I. L. Medintz, J. Am. Chem. Soc., 134, 1876–1891 (2012).

    Article  Google Scholar 

  9. A. P. Voitovich, V. S. Kalinov, M. V. Korzhik, E. F. Martynovich, L. P. Runets, and A. P. Stupak, Radiat. Eff. Defects Solids, 168, No. 2, 130–136 (2013).

    Article  ADS  Google Scholar 

  10. A. P. Voitovich, V. S. Kalinov, A. P. Stupak, A. N. Novikov, and L. P. Runets, J. Lumin., 157, 28–34 (2015).

    Article  Google Scholar 

  11. R. M. Montereali and A. P. Voitovich, in: Nano-Optics: Principles Enabling Basic Research and Applications, B. Di Bartolo, J. Collins, and L. Silvestri (Eds.), Springer, Dordrecht (2017), pp. 149–171.

    Chapter  Google Scholar 

  12. A. P. Voitovich, P. A. Loiko, X. Mateos, L. P. Runets, J. M. Serres, and A. P. Stupak, J. Lumin., 188, 75–80 (2017).

    Article  Google Scholar 

  13. A. P. Voitovich, V. S. Kalinov, P. A. Loiko, E. F. Martynovich, X. Mateos, A. N. Novikov, P. P. Pershukevich, L. P. Runets, J. M. Serres, and A. P. Stupak, J. Lumin., 201, 57–64 (2018).

    Article  Google Scholar 

  14. A. P. Voitovich, V. S. Kalinov, N. N. Naumenko, and A. P. Stupak, Zh. Prikl. Spektrosk., 73, 775–781 (2006) [А. P. Voitovich, V. S. Kalinov, N. N. Naumenko, and A. P. Stupak, J. Appl. Spectrosc., 73, 866–874 (2006)].

  15. V. V. Karasev, N. A. Krotova, and B. V. Deryagin, Dokl. Akad. Nauk SSSR, 88, 777–780 (1953).

    Google Scholar 

  16. J. Wollbrandt, E. Linke, and K. Mayer, Phys. Status Solidi A, 27, K53–K55 (1975).

    Article  ADS  Google Scholar 

  17. B. P. Chandra, N. L. Patel, S. S. Rahangdale, R. P. Patel, and V. K. Patle, Pramana, 60, No. 1, 109–122 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Voitovich.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 1, pp. 71–77, January–February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voitovich, A.P., Kalinov, V.S., Mashko, V.V. et al. Transformation and Formation of Radiation-Induced Point Defects in Irradiated Lithium Fluoride Crystals After Their Mechanical Fragmentation. J Appl Spectrosc 86, 61–66 (2019). https://doi.org/10.1007/s10812-019-00781-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00781-w

Keywords

Navigation