Advertisement

Journal of Applied Spectroscopy

, Volume 86, Issue 1, pp 56–60 | Cite as

Inclusions of the Hexagonal Phase in Cubic ZnS Ceramics

  • А. A. Dunaev
  • P. M. Pakhomov
  • S. D. Khizhnyak
  • A. E. ChmelEmail author
Article
  • 8 Downloads

IR Fourier reflectance spectra (50–500 cm–1) of ZnS ceramics synthesized by chemical vapor deposition (including those with additional hot isostatic pressing), hot pressing, and physical vapor deposition are presented. The samples are assumed to have a cubic crystallographic structure (sphalerite) because of the phase composition of the raw materials and the temperature prehistory of them. However, a weak band at ~295 cm–1 that is characteristic of hexagonal ZnS crystals (wurtzite) manifests itself in both the reflectance spectra and the spectra of optical constants of all samples. Sphalerite → wurtzite recrystallization below the nominal phase transition temperature (1023°С) may be a consequence of the tendency ZnS to form the polytypical structure, which is facilitated in this ceramic material by the highly heterogeneous structure of the crystallites themselves.

Keywords

ZnS ceramics IR reflectance spectra optical constants recrystallization abrasive treatment residual strain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ummartyotin and Y. Infahsaeng, Renewable Sustainable Energy Rev., 55, 17–24 (2016).CrossRefGoogle Scholar
  2. 2.
    M. Saleh, K. G. Lynn, and J. S. McCloy, Proc. SPIE Int. Soc. Opt. Eng., 10179, 1017904 (2017).Google Scholar
  3. 3.
    E. V. Yashina, Neorg. Mater., 39, 788–792 (2003).CrossRefGoogle Scholar
  4. 4.
    R. Zaware and B. Wagh, Mater. Sci.-Pol., 32, 375 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    Z. Shizen, M. A. Hongli, R. Jean, M.-C. Odile, A. Jean-Luc, L. Jacques, Z. Xianghua. J. Optoelectron. Adv. Mater.Rapid Commun., 1, 667–671 (2007).Google Scholar
  6. 6.
    D. Dinsmore, D. S. Hsu, S. B. Qadri, J. O. Cross, T. A. Kennedy, H. F. Gray, and B. R. Ratna, J. Appl. Phys., 88, 4985–4990 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    M. Motlan, G. Zhu, K. D. Tomisa, K. McBean, M. R. Phillips, and E. M. Goldys, Opt. Mater., 29, 1579–1584 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    L. A. Ketova, Heterophasic Heterogeneities as a Source of Nonselective Optical Losses in High-Purity Optical Materials for Fiber And High-Power IR Optics, Doctoral Dissertation in Chemical Sciences, Nizhnii Novgorod (2018).Google Scholar
  9. 9.
    E. V. Karaksina, T. A. Gracheva, and D. N. Shevarenkov, Neorg. Mater., 46, 11–16 (2010).CrossRefGoogle Scholar
  10. 10.
    A. Manabe, A. Mitsuishi, and H. Yoshinaga, Jpn. J. Appl. Phys., 6, 593–599 (1967).ADSCrossRefGoogle Scholar
  11. 11.
    O. Brafman and S. S. Mitra, Phys. Rev., 171, 931–934 (1968).ADSCrossRefGoogle Scholar
  12. 12.
    K. G. Rozenburg and E. H. Urruti, Polycrystalline Chalcogenide Ceramic Material, US Pat. Appl. 20130271610 A1 (2013).Google Scholar
  13. 13.
    P. R. Yoder Jr., in: Opto-Mechanical Systems Design, 4th еdn., P. Yoder and D. Vukobratovich (Eds.), Vol. 1, CRC Press, (2017), Chap. 6.Google Scholar
  14. 14.
    R. H. Telling, G. H. Jilbert, and J. E. Field, Proc. SPIE Int. Soc. Opt. Eng., 3060, (1997).Google Scholar
  15. 15.
    C. S. Chang, J. L. He, and Z. P. Lin, Wear, 255, 115–120 (2003).CrossRefGoogle Scholar
  16. 16.
    A. F. Shchurov, E. M. Gavrishchuk, V. B. Ikonnikov, E. V. Yashina, A. N. Sysoev, and D. N. Shevarenkov, Neorg. Mater., 40, 4000–4007 (2004).Google Scholar
  17. 17.
    W. G. Nilsen, Phys. Rev., 182, 838–850 (1969).ADSCrossRefGoogle Scholar
  18. 18.
    H. Poulet, W. E. Klee, and J. P. Mathieu, in: Proc. Int. Conf. Lattice Dynamics, Copenhagen (1965), pp. 337–341.Google Scholar
  19. 19.
    Q. Xiong, J. Wang, O. Reese, L. C. Lew Yan Voon, and P. C. Eklund, Nano Lett., 4, 2004–2008 (1991).Google Scholar
  20. 20.
    C. S. Tiwary, P. Kumbhakar, A. K. Mitra, and K. Chattopadhyay, J. Lumin., 129, 1366–1370 (2009).CrossRefGoogle Scholar
  21. 21.
    J. S. McCloy, Properties and Processing of Chemical Vapor Deposited Zinc Sulfi de, Ph.D. Thesis, University of Arizona (2008).Google Scholar
  22. 22.
    D. Paquet and S. Ghosh, Eng. Fract. Mech., 78, 205–225 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • А. A. Dunaev
    • 1
  • P. M. Pakhomov
    • 2
  • S. D. Khizhnyak
    • 2
  • A. E. Chmel
    • 3
    Email author
  1. 1.S. I. Vavilov State Optical InstituteSt. PetersburgRussia
  2. 2.Tver′ State UniversityTver’Russia
  3. 3.A. F. Ioffe Physical-Technical InstituteSt. PetersburgRussia

Personalised recommendations