Skip to main content
Log in

Inclusions of the Hexagonal Phase in Cubic ZnS Ceramics

  • Published:
Journal of Applied Spectroscopy Aims and scope

IR Fourier reflectance spectra (50–500 cm–1) of ZnS ceramics synthesized by chemical vapor deposition (including those with additional hot isostatic pressing), hot pressing, and physical vapor deposition are presented. The samples are assumed to have a cubic crystallographic structure (sphalerite) because of the phase composition of the raw materials and the temperature prehistory of them. However, a weak band at ~295 cm–1 that is characteristic of hexagonal ZnS crystals (wurtzite) manifests itself in both the reflectance spectra and the spectra of optical constants of all samples. Sphalerite → wurtzite recrystallization below the nominal phase transition temperature (1023°С) may be a consequence of the tendency ZnS to form the polytypical structure, which is facilitated in this ceramic material by the highly heterogeneous structure of the crystallites themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ummartyotin and Y. Infahsaeng, Renewable Sustainable Energy Rev., 55, 17–24 (2016).

    Article  Google Scholar 

  2. M. Saleh, K. G. Lynn, and J. S. McCloy, Proc. SPIE Int. Soc. Opt. Eng., 10179, 1017904 (2017).

    Google Scholar 

  3. E. V. Yashina, Neorg. Mater., 39, 788–792 (2003).

    Article  Google Scholar 

  4. R. Zaware and B. Wagh, Mater. Sci.-Pol., 32, 375 (2014).

    Article  ADS  Google Scholar 

  5. Z. Shizen, M. A. Hongli, R. Jean, M.-C. Odile, A. Jean-Luc, L. Jacques, Z. Xianghua. J. Optoelectron. Adv. Mater.Rapid Commun., 1, 667–671 (2007).

    Google Scholar 

  6. D. Dinsmore, D. S. Hsu, S. B. Qadri, J. O. Cross, T. A. Kennedy, H. F. Gray, and B. R. Ratna, J. Appl. Phys., 88, 4985–4990 (2000).

    Article  ADS  Google Scholar 

  7. M. Motlan, G. Zhu, K. D. Tomisa, K. McBean, M. R. Phillips, and E. M. Goldys, Opt. Mater., 29, 1579–1584 (2007).

    Article  ADS  Google Scholar 

  8. L. A. Ketova, Heterophasic Heterogeneities as a Source of Nonselective Optical Losses in High-Purity Optical Materials for Fiber And High-Power IR Optics, Doctoral Dissertation in Chemical Sciences, Nizhnii Novgorod (2018).

  9. E. V. Karaksina, T. A. Gracheva, and D. N. Shevarenkov, Neorg. Mater., 46, 11–16 (2010).

    Article  Google Scholar 

  10. A. Manabe, A. Mitsuishi, and H. Yoshinaga, Jpn. J. Appl. Phys., 6, 593–599 (1967).

    Article  ADS  Google Scholar 

  11. O. Brafman and S. S. Mitra, Phys. Rev., 171, 931–934 (1968).

    Article  ADS  Google Scholar 

  12. K. G. Rozenburg and E. H. Urruti, Polycrystalline Chalcogenide Ceramic Material, US Pat. Appl. 20130271610 A1 (2013).

  13. P. R. Yoder Jr., in: Opto-Mechanical Systems Design, 4th еdn., P. Yoder and D. Vukobratovich (Eds.), Vol. 1, CRC Press, (2017), Chap. 6.

  14. R. H. Telling, G. H. Jilbert, and J. E. Field, Proc. SPIE Int. Soc. Opt. Eng., 3060, (1997).

  15. C. S. Chang, J. L. He, and Z. P. Lin, Wear, 255, 115–120 (2003).

    Article  Google Scholar 

  16. A. F. Shchurov, E. M. Gavrishchuk, V. B. Ikonnikov, E. V. Yashina, A. N. Sysoev, and D. N. Shevarenkov, Neorg. Mater., 40, 4000–4007 (2004).

    Google Scholar 

  17. W. G. Nilsen, Phys. Rev., 182, 838–850 (1969).

    Article  ADS  Google Scholar 

  18. H. Poulet, W. E. Klee, and J. P. Mathieu, in: Proc. Int. Conf. Lattice Dynamics, Copenhagen (1965), pp. 337–341.

  19. Q. Xiong, J. Wang, O. Reese, L. C. Lew Yan Voon, and P. C. Eklund, Nano Lett., 4, 2004–2008 (1991).

  20. C. S. Tiwary, P. Kumbhakar, A. K. Mitra, and K. Chattopadhyay, J. Lumin., 129, 1366–1370 (2009).

    Article  Google Scholar 

  21. J. S. McCloy, Properties and Processing of Chemical Vapor Deposited Zinc Sulfi de, Ph.D. Thesis, University of Arizona (2008).

  22. D. Paquet and S. Ghosh, Eng. Fract. Mech., 78, 205–225 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Chmel.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 1, pp. 66–70, January–February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunaev, А.A., Pakhomov, P.M., Khizhnyak, S.D. et al. Inclusions of the Hexagonal Phase in Cubic ZnS Ceramics. J Appl Spectrosc 86, 56–60 (2019). https://doi.org/10.1007/s10812-019-00780-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00780-x

Keywords

Navigation