Skip to main content
Log in

Quantitative Analysis of Trace Metals in Engine Oil Using Indirect Ablation-Laser Induced Breakdown Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

In engine oil, the element composition and concentration changes as the engine operates. A rapid and effective detection of these changes, therefore, is needed to prevent accidents. Indirect ablation laser-induced breakdown spectroscopy (IA-LIBS) is a new technology introduced specially for oil samples. In this paper, 5 different oils are used for the analysis. The matrix effect on the calibration curves of analytical elements (Cu, Ti, Fe, and Ni) in these oils is investigated. The results show that the matrix effect is reasonably negligible under the conditions of our experiment. A generalized calibration curve can be established for analytical metals in different types of oils. We use the generalized calibration curves established to determine the concentrations of Cu, Ti, Fe, and Ni in mixed oils. The IA-LIBS results show that good agreement is obtained between the measured and known values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Gondal, T. Hussain, Z. H. Yamani, and M. A. Baig, Talanta, 69, No. 5, 1072–1078 (2006).

    Article  Google Scholar 

  2. J. O. Nriagu and J. M. Pacyna, Nature, 333, No. 6169, 134–139 (1998).

    Article  ADS  Google Scholar 

  3. R. Q. Aucélio, R. M. de Souza, R. C. de Campos, N. Miekeley, and C. L. P. da Silveira, Spectrochim. Acta B, 62, No. 9, 952–961 (2007).

    Article  ADS  Google Scholar 

  4. Y. H. Wei, J. Y. Zhang, T. C. Dai, T. H. Tu, and L. G. Luo, Food Sci., 32, No. 12, 213–215 (2011).

    Google Scholar 

  5. K. J. Eisentraut, R. W. Newman, C. S. Saba, R. E. Kauffman, and W. E. Rhine, Anal. Chem., 56, No. 9, 1086A–1091A (1984).

    Google Scholar 

  6. B. F. Reis, M. Knochen, G. Pignalosa, N. Cabrera, and J. Giglio, Talanta, 64, No. 5, 1220–1225 (2004).

    Article  Google Scholar 

  7. A. V. Zmozinski, A. de Jesus, M. G. R. Vale, and M. M. Silva, Talanta, 83, No. 2, 637–643 (2010).

    Article  Google Scholar 

  8. R. M. Souza, C. L. P. da Silveira, and R. Q. Aucélio, Anal. Sci., 20, No. 2, 351–355 (2004).

    Article  Google Scholar 

  9. G. M. Mastoi, M. Y. Khuhawar, and R. B. Bozdar, J. Quant. Spectrosc. Radiat. Transfer, 102, No. 2, 236–240 (2006).

    Article  ADS  Google Scholar 

  10. M. P. Escobar, B. W. Smith, and J. D. Winefordner, Anal. Chim. Acta, 320, No. 1, 11–17 (1996).

    Article  Google Scholar 

  11. I. M. Goncalves, M. Murillo, and A. M. Gonzalez, Talanta, 47, No. 4, 1033–1042 (1998).

    Article  Google Scholar 

  12. P. Celio, C. Juliana, M. C. S. Lucas, and B. G. Fabinao, J. Braz. Chem. Soc., 18, No. 3, 463–512 (2007).

    Article  Google Scholar 

  13. A. De Giacomo, M. Dell'Aglio, O. De Pascale, and M. Capitelli, Spectrochim. Acta B, 62, No. 8, 721–738 (2007).

    Article  ADS  Google Scholar 

  14. P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, Anal. Chim. Acta, 429, No. 2, 269–278 (2001).

    Article  Google Scholar 

  15. C. A. D'Angelo, M. Garcimuño, D. M. D. Pace, and G. Bertuccellil, J. Quant. Spectrosc. Radiat. Transfer, 164, 89–96 (2015).

  16. F. Boué-Bigne, Spectrochim. Acta B, 63, No. 10, 1122–1129 (2008).

    Article  ADS  Google Scholar 

  17. J. Kaiser, M. Galiová, K. Novotný, R. Červenk, L. Reale, J. Novotný, M. Liška, O. Samek, V. Kanický, A. Hrdličk, K. Stejskal, V. Adam, and R. Kizek, Spectrochim. Acta B, 64, No. 1, 67–73 (2009).

    Article  ADS  Google Scholar 

  18. F. Y. Yueh, R. C. Sharma, J. P. Singh, H. S. Zhang, and W. A. Spencer, Air Waste Manage., 52, No. 11, 1307–1315 (2002).

    Article  Google Scholar 

  19. J. S. Xiu, X. S. Bai, E. Negre, V. Motto-Ros, and J. Yu, Appl. Phys. Lett., 102, No. 102, 2441011–2441015 (2013).

    Google Scholar 

  20. J. S. Xiu, V. Motto-Ros, G. Panczer, R. E. Zheng, and J. Yu, Spectrochim. Acta B, 91, 24–30 (2014).

    Article  Google Scholar 

  21. P. Yaroshchyk, R. J. S. Morrison, D. Body, and B. L. Chadwick, Spectrochim. Acta B, 60, No. 11, 1482–1485 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junshan Xiu.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 1, pp. 51–57, January–February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiu, J., Dong, L., Liu, Y. et al. Quantitative Analysis of Trace Metals in Engine Oil Using Indirect Ablation-Laser Induced Breakdown Spectroscopy. J Appl Spectrosc 86, 43–49 (2019). https://doi.org/10.1007/s10812-019-00778-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00778-5

Keywords

Navigation