Skip to main content

Advertisement

Log in

Quantum-Cascade Lasers in Medicine and Biology (Review)

  • Published:
Journal of Applied Spectroscopy Aims and scope

Problems connected with the use of quantum-cascade lasers (QCLs) in biomedical practice are discussed. A comparative analysis was made of laser spectroscopic methods for noninvasive diagnostics of diseases by exhaled air; examples of the practical implementation of this idea based on QCL are given. The use of QCL in traditional laser surgery and laser angioplasty is discussed. Particular attention is paid to terahertz imaging of soft tissues, as well as to microspectroscopy and its use in the creation of hyperspectral images of biological tissue in the midinfrared range. A number of problems associated with the use of QCL in medicine are raised, and possible directions for promising research where QCL can play a decisive role are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. V. Stepanov, Tr. In-ta Obshchei Fiziki im. A. M. Prokhorova, 61, 47–53 (2005).

    Google Scholar 

  2. E. V. Stepanov and V. A. Milyaev, Kvantovaya Élektron., 32, No. 11, 987–992 (2002)

    Google Scholar 

  3. V. L. Vaks, E. G. Domracheva, E. A. Sobakinskaya, and M. B. Chernyaeva, Uspekhi Fiz. Nauk. 184, No. 7, 739–758 (2014).

    Google Scholar 

  4. V. Vaks, J. Infr. Millim. Terahertz Waves, 33, No. 1, 43–53 (2012).

    Google Scholar 

  5. L. A. Skvortsov, Zh. Prikl. Spektrosk., 81, No. 5, 653–678 (2014) [L. A. Skvortsov, J. Appl. Spectrosc., 81, 725–749 (2014)].

  6. A. Schwaighofer, M. Brandstetter, and B. Lendl, Chem. Soc. Rev., 46, No. 19, 5903–5924 (2017).

    Google Scholar 

  7. K. Wörle, F. Seichter, A. Wilk, C. Armacost, T. Day, M. Godejohann, U. Wachter, and B. Mizaikoff, Analyt. Chem., 85, No. 5, 2697–2702 (2013).

    Google Scholar 

  8. C. Wang and P. Sahay, Sensors, 9, No. 10, 8230–8262 (2009).

    Google Scholar 

  9. V. Spagnolo, R. Lewicki, L. Dong, and F. K. Tittel, Proc. 2011 IEEE International Workshop on Medical Measurements and Applications (MeMeA), 332–335 (2011).

  10. T. H. Risby and F. K. Tittel, Opt. Eng., 49, 111123–111137 (2010).

    ADS  Google Scholar 

  11. J. H. Shorter, D. D. Nelson, J. B. McManus, M. S. Zahniser, and D. K. Milton, IEEE Sens. J., 10, No. 1, 76–84 (2010).

    ADS  Google Scholar 

  12. K. Hashimura, K. Ishii, N. Akikusa, T. Edamura, H. Yoshida, and K. Awazu, J. Innovat. Opt. Health Sci., 7, No. 3, 1450029-1–9 (2014).

    Google Scholar 

  13. Y. Huang and J. Kang, Proc. SPIE, 8209, 82091W (2012)

    ADS  Google Scholar 

  14. K. Hashimura, K. Ishii, N. Akikusa, T. Edamura, H. Yoshida, and K. Awazu, Adv. Biomed. Eng., 1, 74–80 (2012).

    Google Scholar 

  15. K. Hashimura, K. Ishii, and K. Awazu, Opt. Rev., 23, No. 2, 299–306 (2016).

    Google Scholar 

  16. A. Schwaighofer, M. Montemurro, S. Freitag, C. Kristament, M. Culzoni, and B. Lendl, Analyt. Chem., 90, No. 11, 7072–7079 (2018).

    Google Scholar 

  17. S. Kim, F. Hatami, A. Gu, A. Kurian, J. Ford, J. Harris, G. Scalari, and J. Faist, in: Lasers and Electro-Optics Society, LEOS 2006, 19th Annual Meeting of the IEEE, 231–232 (2006).

  18. S. Kim, F. Hatami, G. Harris, A. Kurian, J. Ford, D. King, G. Scalari, M. Giovanny, M. Hoyler, and J. Faist, Appl. Phys. Lett., 88, No. 15, 153903-1–153903-3 (2006).

    ADS  Google Scholar 

  19. C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, Sci. Rep. (Nature Publisher Group), 8, No. 1, 1–10 (2018).

    Google Scholar 

  20. D. Zhang, C. Li, C. Zhang, M. Slipchenko, G. Eakins, and J. Cheng, Sci. Adv., 2, No. 9, e1600521-1–7 (2016).

    ADS  Google Scholar 

  21. M. Vitiello, G. Scalari, B. Williams, and P. Natale, Opt. Express, 23, No. 4, 5167–5182.

  22. M. Razeghi, Q. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, Opt. Express, 23, No. 7, 8462–8475 (2015).

    ADS  Google Scholar 

  23. R. Curl, F. Capasso, C. Gmachl, A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. Tittel, Chem. Phys. Lett., 487, 1–18 (2010).

    ADS  Google Scholar 

  24. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. Wang, F. Capasso, C. Kumar, and N. Patel, Appl. Phys. Lett., 95, No. 14, 14113-1–14113-9.

  25. I. I. Zasabitskii, XII All-Russia Youth Concourse-Conference on Optics and Laser Physics, 12–16 November 2014, Samara (2014); http://www.myshared.ru/slide/968796.

  26. J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, IEEE J. Quantum Electron., 38, No. 6, 533–546 (2002).

    ADS  Google Scholar 

  27. A. Tredicucci, F. Capasso, C. Gmachl, D. Sivco, A. Hutchinson, and A. Cho, Appl. Phys. Lett., 73, No. 15, 2101–2103 (1998).

    ADS  Google Scholar 

  28. J. Faist, M. Beck, T. Aellen, and E. Gini, Appl. Phys. Lett., 78, No. 2, 147–149 (2001).

    ADS  Google Scholar 

  29. M. Belkin and F. Capasso, Phys. Scripta, 90, No. 1, 118002-13 (2015).

    ADS  Google Scholar 

  30. B. Williams, S. Kumar, Q. Hu, and J. Reno, Electron. Lett., 42, No. 2, 89–91 (2006).

    Google Scholar 

  31. A. Lee, B. Williams, S. Kumar, Q. Hu, and J. Reno, Opt. Lett., 7, No. 35, 910–912 (2010)

    ADS  Google Scholar 

  32. B. Williams, Nature Photon., 1, No. 9, 517 (2007).

    ADS  Google Scholar 

  33. L. Skvortsov, Kvantovaya Élektron., 41, No. 12, 1051–1060 (2011).

    Google Scholar 

  34. L. Skvortsov, Laser Methods of Remote Detection of Chemical Compounds on the Surface of Bodies [in Russian], Tekhnosfera, Moscow (2014).

    Google Scholar 

  35. L. Skvortsov, Kvantovaya Élektron., 42, No. 1, 1–11 (2012).

    Google Scholar 

  36. H. Preier, Semicond. Sci. Technol., 5, S12–S20 (1990).

    ADS  Google Scholar 

  37. Yu. Kuritsyn, Infrared Spectroscopy with Injection Lasers. Analytical Laser Spectroscopy [in Russian] (Ed. V. S. Letokhov), Nauka, Moscow (1986), pp. 120–173.

  38. L. Skvortsov, Principles of Photothermal Radiography and Laser Thermography [in Russian], Tekhnosfera, Moscow (2017).

    Google Scholar 

  39. D. Caffey, M. Radunsky, V. Cook, M. Weida, P. Buerki, S. Crivello, and T. Day, Proc. SPIE, 7953, 79531K (2011).

    ADS  Google Scholar 

  40. R. Mihalcea, D. Baer, and R. Hanson, Appl. Opt., 35, 4059–4064 (1996).

    ADS  Google Scholar 

  41. D. Baer, R. Hanson, M. Newfield, and N. Gopaul, Opt. Lett., 19, 1900–1902 (1994).

    ADS  Google Scholar 

  42. P. Eliseev, Introduction to Physics of Injection Lasers [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  43. I. Gordon, L. Rothman, C. Hill, R. Kochanov, Y. Tan, P. Bernath, and B. Drouin, J. Quant. Spectrosc. Radiat. Transfer, 203, 3–69 (2017).

    ADS  Google Scholar 

  44. P. Kluczynski, J. Gustafsson, A. Lindberg, and O. Axner, Spectrochim. Acta B, 56, 1277–1354 (2001).

    ADS  Google Scholar 

  45. B. Brumfield, M. M. Taubman, and M. Phillips, Photonics, 3, No. 2, 33 (2016).

    Google Scholar 

  46. J. Haus, Optical Sensors: Basics and Applications, John Wiley & Sons (2010).

  47. P. Zalicki and R. Zare, J. Chem. Phys., 102, No. 7, 2708–2717 (1995).

    ADS  Google Scholar 

  48. J. Wojtas, J. Mikolajczyk, and Z. Bielecki, Sensors, 13, No. 6, 7570–7598 (2013).

    Google Scholar 

  49. J. Scherer, J. Paul, H. Jiao, and A. O'Keefe, Appl. Opt., 40, 6725–6732 (2001).

    ADS  Google Scholar 

  50. D. Baer, J. Paul, J. Gupta, and A. O'Keefe, Appl. Phys. B: Lasers O., 75, 261–265 (2002).

    ADS  Google Scholar 

  51. Y. Bakhirkin, A. Kosterev, C. Roller, R. Curl, and F. Tittel, Appl. Opt., 43, 2257–2266 (2004).

    ADS  Google Scholar 

  52. Y. Bakhirkin, A. Kosterev, R. Curl, F. Tittel, D. Yarekha, L. Hvozdara, M. Giovannini, and J. Faist, Appl. Phys. B: Lasers O., 82, 149–154 (2006).

    ADS  Google Scholar 

  53. R. Peeters, G. Berden, A. Apituley, and G. Meijer, Appl. Phys. B: Lasers O., 71, 231–236 (2000).

    ADS  Google Scholar 

  54. H. Dahnke, D. Kleine, P. Hering, and M. Mürtz, Appl. Phys. B: Lasers O., 72, 971–975 (2001).

    ADS  Google Scholar 

  55. H. Dahnke, D. Kleine, C. Urban, P. Hering, and M. Mürtz, Appl. Phys. B: Lasers O., 72, 121–125 (2001).

    ADS  Google Scholar 

  56. G. von Basum, D. Halmer, P. Hering, M. Mürtz, S. Schiller, F. Mueller, A. Popp, and F. Kuehnemann, Opt. Lett., 29, 797–799 (2004).

    ADS  Google Scholar 

  57. D. Halmer, S. Thelen, P. Hering, and M. Mürtz, Appl. Phys. B: Lasers O., 85, 437–443 (2006).

    ADS  Google Scholar 

  58. D. Halmer, G. von Basum, P. Hering, and M. Mürtz, Opt. Lett., 30, 2314–2316 (2005).

    ADS  Google Scholar 

  59. P. Korolenko, I. Nikolaev, V. Ochkin, and S. Tskhai, Kvantovaya Élektron., 44, No. 4, 353–361 (2014).

    Google Scholar 

  60. A. O'Keefe, J. Scherer, and J. Paul, Chem. Phys. Lett., 307, Nos. 5–6, 343–349 (1999).

    ADS  Google Scholar 

  61. J. Paul, L. Lapson, and J. Anderson, Appl. Opt., 40, No. 27, 4904–4910 (2001).

    ADS  Google Scholar 

  62. G. Engel, W. Drisdell, F. Keutsch, E. Moyer, and J. Anderson, Appl. Opt., 45, No. 36, 9221–9229 (2006).

    ADS  Google Scholar 

  63. I. Nikolaev, V. Ochkin, M. Spiridonov, and S. Tskhai, Laser Phys., 21, 2088 (2011).

    ADS  Google Scholar 

  64. I. Nikolaev, V. Ochkin, and S. Tskhai, Laser Phys. Lett., 10, 115701 (2013).

    ADS  Google Scholar 

  65. L. Kreuzer, J. Appl. Phys., 42, 2934 (1971).

    ADS  Google Scholar 

  66. A. Rosencwaig and A. Gersho, J. Appl. Phys., 47, 64 (1976).

    ADS  Google Scholar 

  67. L. Skvortsov, Kvantovaya Élektron., 43, No. 1, 1–13 (2013).

    Google Scholar 

  68. L. Skvortsov, Recent Patent. Eng., 3, No. 2, 129–145 (2009).

    Google Scholar 

  69. B. Paldus, T. Spence, R. Zare, J. Oomens, F. Harren, D. Parker, and A. Hutchinson, Opt. Lett., 24, No. 3, 178–180 (1999).

    ADS  Google Scholar 

  70. F. Harren, G. Cotti, J. Oomens, and S. Hekkert, Encycloped. Analyt. Chem., 3, 2203–2226 (2000).

    Google Scholar 

  71. M. Haisch, P. Hering, P. Schadewaldt, H. Brosicke, B. Braden, S. Koletzko, and C. Steffen, Isotop. Environ. Health Stud., 30, Nos. 2–3, 253–257 (1994).

    Google Scholar 

  72. F. Harren and J. Reuss, Progress in Photothermal and Photoacoustic Science and Technology, Life and Earth Science in: A. Mandelis and P. Hess Eds., SPIE, Bellingham, WA, 3, 83–127 (1997).

  73. A. Miklos, P. Hess, and Z. Bozoki, Rev. Sci. Instrum., 72, 1937–1955 (2001).

    ADS  Google Scholar 

  74. A. Elia, P. M. Lugarà, C. Di Franco, and V. Spagnolo, Sensors, 9, 9616 (2009).

    Google Scholar 

  75. A. Kosterev, Y. Bakhirkin, R. Curl, and F. Tittel, Opt. Lett., 27, No. 21, 1902–1904 (2002).

    ADS  Google Scholar 

  76. S. Ohira and K. Toda, Anal. Chim. Acta, 619, No. 2, 143–156 (2008).

    Google Scholar 

  77. P. Pellegrino and R. Polcawich, Chem. Biol. Sensing IV, 5085, 52–64 (2003).

    ADS  Google Scholar 

  78. M. Bain, N. Mitchell, B. Armstrong, J. Uotila, I. Kauppinen, E. Terray, and B. Ward, Miniaturization and Integration of a Cantilever Based Photoacoustic Sensor into Micro Micromachined Device, Abst., No. 45, 2579 (2011).

  79. A. Slutsky, Am. J. Respir. Crit. Care Med., 160, 2104–2117 (1999).

    Google Scholar 

  80. Am. J. Respir. Crit. Care Med., 171, No. 8, 912–930 (2005).

  81. P. Mazzone, X. Wang, Y. Xu, T. Mekhail, M. Beukemann, J. Na, and M. Sasidhar, J. Thoracic Oncol., 7, No. 1, 137–142 (2012).

    Google Scholar 

  82. J. Shorter, D. Nelson, J. McManus, M. Zahniser, and D. Milton, IEEE Sensors J., 10, No. 1, 76–84 (2010).

    ADS  Google Scholar 

  83. A. Reyes-Reyes, Z. Hou, E. van Mastrigt, R. Horsten, J. De Jongste, M. Pijnenburg, and N. Bhattacharya, Opt. Express, 22, No. 15, 18299–18309 (2014).

    ADS  Google Scholar 

  84. A. Reyes-Reyes, R. Horsten, H. Urbach, and N. Bhattacharya, Anal. Chem., 87, No. 1, 507–512 (2014).

    Google Scholar 

  85. Toshiba Develops Breath Analyzer for Medical Applications, Toshiba, Press Release (March 18, 2014).

  86. Aerodyne Research Inc., Single Laser Quantum Cascade LaserTrace Gas Monitors: The Mini Monitor (2016).

  87. Composition of Exhaled and Alveolar Air [in Russian], http://www.amedgrup.ru/vozduh.html.

  88. M. Thorpe, K. Moll, J. Jones, B. Safdi, and J. Ye, Science, 311, 1595–1599 (2006).

    ADS  Google Scholar 

  89. M. Thorpe, D. Balslev-Clausen, M. Kirchner, and J. Ye, Opt. Express, 16, 2387–2397 (2008).

    ADS  Google Scholar 

  90. M. Bader, D. Tilki, G. Gratzke, R. Sroka, C. Stief, and O. Reich, World J. Urol., 28, 169–172 (2010).

    Google Scholar 

  91. N. Kelbauskiene, K. Baseviciene, A. Goharkhay, V. Moritz, and V. Machiulskeiene, Laser Med. Sci., 26, 445–452 (2011).

    Google Scholar 

  92. S. Renvert, C. Lindahl, A. Jansåker, and G. Persson, J. Clin. Periodontol., 38, 65–73 (2011).

    Google Scholar 

  93. A. Chapas, L. Brightman, S. Sukal, E. Hale, D. Daniel, L. Bernstein, and R. Geronemus, Lasers Surg. Med., 40, 381–386 (2008).

    Google Scholar 

  94. N. Kalintseva and V. Serebryakov, Fiber Methods for Delivery of Radiation for Medical Lasers of Mid-IR Region: Requirements and Parameters [in Russian]; book.sarov.ru/wp-content/uploads/lazer-X-2017-15.pdf.

  95. B. Tarasevich, IR Spectra of Main Classes of Organic Compounds, Ref. Mater. [in Russian], MGU im. M. V. Lomonosova (2012).

  96. Y. Andreev, A. Ionin, I. Kinyaevsky, Y. Klimachev, A. Kozlov, A. Kotkov, and A. Shaiduko, Quantum Electron., 43, No. 2, 139 (2013).

    ADS  Google Scholar 

  97. G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Osso, J. Tribble, J. Werkhaven, and D. O'Day, Nature, 371, 416–419 (2004).

    ADS  Google Scholar 

  98. J. Youn, G. Peavy, and V. Venugopalan, Lasers Surg. Med., 36, 202–209 (2004).

    Google Scholar 

  99. M. Heya, Y. Fukami, H. Nagats, Y. Nishida, and K. Awazu, Nucl. Instrum. Meth. Phys. Res., A 507, 564–568 (2003).

  100. M. Mackanos, J. Kozub, D. Hachey, K. Joos, D. Ellis, and E. Jansen, Phys. Med. Biol., 50, 1885–1899 (2005).

    Google Scholar 

  101. Y. Nakajima, K. Iwatsuki, K. Ishii, S. Suzuki, T. Fujinaka, T. Yoshimine, and K. Awazu, J. Neurosurg., 104, 426–428 (2006).

    Google Scholar 

  102. H. Hazama, Y. Takatani, and K. Awazu, Proc. SPIE, 6455, 645507 (2007).

    Google Scholar 

  103. M. Mackanos, D. Simanovskii, K. Joos, H. Schwettman, and E. Jansen, Lasers Surg. Med., 39, 230–236 (2007).

    Google Scholar 

  104. J. Kozub, B. Ivanov, A. Jayasinghe, R. Prasad, J. Shen, M. Klosner, D. Heller, M. Mendenhall, D. Piston, K. Joos, and M. Hutson, Biomed. Opt. Express, 2, 1275–1281 (2011).

    Google Scholar 

  105. G. Edwards, R. Pearlstein, M. Copeland, M. Hutson, K. Latone, A. Spiro, and G. Pasmanik, Opt. Lett., 32, 1426–1428 (2007).

    ADS  Google Scholar 

  106. H. Rong, S. Xu, O. Cohen, O. Raday, M. Lee, V. Sih, and M. Paniccia, Nature Photon., 2, No. 3, 170 (2008).

    ADS  Google Scholar 

  107. F. Koenz, M. Frenz, H. Prastisto, H. Weber, A. Silenok, and V. Konov, Proc. SPIE, 2624, 67 (1996).

    ADS  Google Scholar 

  108. A. Oraevsky, S. Jacques, R. Esenaliev, and F. Tittel, Lasers Surg. Med., 18, No. 3, 231 (1996).

    Google Scholar 

  109. G. Zheltov, O. Romanov, V. Burko, and É. Sobol, Laser Med., 20, No. 3, 96 (2016).

    Google Scholar 

  110. G. Zheltov, V. Lisinetskii, A. Grabtchikov, and V. Orlovich, Appl. Opt., 47, No. 3, 3549 (2008).

    ADS  Google Scholar 

  111. T. Hutchens, A. Darafsheh, A. Fardad, A. Antoszyk, H. Ying, V. Astratov, and N. Fried, J. Biomed. Opt., 19, No. 1, 018003-1–018003-8 (2014).

    ADS  Google Scholar 

  112. Y. Fukami and K. Awazu, Jpn. J. Appl. Phys., 42, No. 6, 3716–3721 (2015).

    ADS  Google Scholar 

  113. S. Suzuki-Yoshihashi, S. Yamada, I. Sato, and K. Awazu, Proc. SPIE, 6083, 60830I-1 (2006).

    Google Scholar 

  114. V. Serebryakov, É. Boiko, N. Petrishchev, and A. Yan, Opt. Zh., 77, No. 1, 9–23 (2010).

    Google Scholar 

  115. V. Tuchin, Lasers and Fiber Optics in Biomedical Investigations [in Russian], Fizmatlit (2010).

  116. K. Hashimura, I. Katsunori, and A. Kunio, Jpn. J. Appl. Phys., 54, No. 11, 112701 (2015).

    ADS  Google Scholar 

  117. K. Hashimura, K. Ishii, N. Akikusa, T. Edamura, H. Yoshida, and K. Awazu, Trans. Jpn. Soc. Med. Biol. Eng., 51 (Supplement) R-178 (2013).

  118. N. Masaki and S. Okazaki, Biomed. Opt. Express, 9, No. 5, 2095–2103 (2018).

    Google Scholar 

  119. S. Smye, J. Chamberlain, A. Fitzgerald, and E. Berry, Phys. Med. Biol., 46, No. 9, R101–R112 (2001).

    ADS  Google Scholar 

  120. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, Nature, 414, 286–289 (2001).

    ADS  Google Scholar 

  121. D. Bennett, Z. Taylor, P. Tewari, R. Singh, M. Culjat, W. Grundfest, and E. Brown, J. Biomed. Opt., 16, No. 5, 057003 (2011).

    ADS  Google Scholar 

  122. D. Mittleman, M. Gupta, R. Neelamani, R. Baraniuk, J. Rudd, and M. Koch, Appl. Phys. B, 68, No. 6, 1085–1094 (1999).

    ADS  Google Scholar 

  123. D. Crawley, C. Longbottom, V. Wallace, B. Cole, D. Arnone, and M. Pepper, J. Biomed. Opt., 8, No. 2, 303–308 (2003).

    ADS  Google Scholar 

  124. R. Woodward, P. Wallace, R. Pye, B. Cole, D. Arnone, E. Linfield, and M. Pepper, J. Invest. Dermatol., 120, No. 1, 72–78 (2003).

    Google Scholar 

  125. M. Lazebnik, D. Popovic, L. McCartney, C. Watkins, M. Lindstrom, J. Harter, and W. Temple, Phys. Med. Biol., 52, No. 20, 6093 (2007).

    Google Scholar 

  126. E. Pickwell, B. Cole, A. Fitzgerald, M. Pepper, and V. Wallace, Phys. Med. Biol., 49, No. 9, 1595 (2004).

    Google Scholar 

  127. R. Weissleder and M. Pittet, Nature, 452, No. 7187, 580 (2008).

    ADS  Google Scholar 

  128. D. Mittleman, R. Jacobsen, and M. Nuss, IEEE J. Sel. Top. Quantum Electron., 2, 679 (1996).

    ADS  Google Scholar 

  129. R. Woodward, B. Cole, V. Wallace, R. Pye, D. Arnone, E. Linfield, and M. Pepper, Phys. Med. Biol., 47, No. 21, 3853–3863 (2002).

    Google Scholar 

  130. P. Bolivar, M. Brucherseifer, M. Nagel, H. Kurz, A. Bosserhoff, and R. Büttner, Phys. Med. Biol., 47, 3815 (2002).

    Google Scholar 

  131. T. Chan, J. Bjarnason, A. Lee, M. Celis, and E. Brown, Appl. Phys. Lett., 85, 2523 (2004).

    ADS  Google Scholar 

  132. R. Köhler, A. Tredicucci, F. Beltram, H. Beere, E. Linfield, A. Davies, and F. Rossi, Nature, 417, No. 6885, 156 (2002).

    ADS  Google Scholar 

  133. C. Worrall, J. Alton, M. Houghton, S. Barbieri, H. Beere, D. Ritchie, and C. Sirtori, Opt. Express, 14, No. 1, 171–181 (2006).

    ADS  Google Scholar 

  134. G. Bellisola and C. Sorio, Am. J. Cancer Res., 2, No. 1, 1 (2012).

    Google Scholar 

  135. M. Kole, R. Reddy, M. Schulmerich, M. Gelber, and R. Bhargava, Anal. Chem., 84, 10366–10372 (2012).

    Google Scholar 

  136. N. Kröger-Lui, N. Gretz, K. Haase, B. Kränzlin, S. Neudecker, A. Pucci, and W. Petrich, Analyst, 140, No. 7, 2086–2092 (2015).

    ADS  Google Scholar 

  137. K. Haase, N. Kröger-Lui, A. Pucci, A. Schönhals, and W. Petrich, Faraday Discus., 187, 119–134 (2016).

    ADS  Google Scholar 

  138. P. Bassan, M. Weida, J. Rowlette, and P. Gardne, Analyst, 139, 3856–3859 (2014).

    ADS  Google Scholar 

  139. M. Pilling, A. Henderson, and P. Gardner, Anal. Chem., 89, 7348–7355 (2017).

    Google Scholar 

  140. M. Pilling, A. Henderson, B. Bird, M. Brown, N. Clarke, and P. Gardner, Faraday Discus., 187, 135–154 (2016).

    ADS  Google Scholar 

  141. D. Lasne, G. Blab, F. De Giorgi, F. Ichas, B. Lounis, and L. Cognet, Opt. Express, 15, 14184–14193 (2016).

    ADS  Google Scholar 

  142. A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok, and M. Orrit, Science, 330, 353–356 (2010).

    ADS  Google Scholar 

  143. R. Furstenberg, C. A. Kendziora, M. R. Papantonakis, V. Nguyen, and R. McGill, Proc. SPIE, Defense, Security, and Sensing, Baltimore, MD, 9455, 945501 (2012).

  144. A. Mërtiri, A. Totachawattana, H. Liu, M. K. Hong, T. Gardner, M. Y. Sander, and S. Erramilli, Conference on Lasers and Electro-Optics (CLEO’14), San Jose, CA, June 8–13, 2014 (2014).

  145. M. Y. Sander, Mid-Infrared Photothermal Imaging, in Frontiers in Optics 2015, San Jose, CA, October 18–22, 2015 (2015).

  146. G. Chebotareva, Laser Phys., 8, 941 (1998).

    Google Scholar 

  147. B. Wong, T. Milner, B. Anvari, A. Sviridov, A. Omel'chenko, V. Bagratashvili, E. Sobol, and J. Nelson, Laser. Med. Sci., 13, No. 1, 66–72 (1998).

    Google Scholar 

  148. L. Skvortsov and V. Kirillov, Kvantovaya Élektron., 33, No. 12, 1113–1117 (2003).

    Google Scholar 

  149. V. Kirillov and L. Skvortsov, Kvantovaya Élektron., 36, No. 8, 797–799 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Skvortsov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 86, No. 1, pp. 5–32, January–February, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramov, P.I., Kuznetsov, E.V., Skvortsov, L.A. et al. Quantum-Cascade Lasers in Medicine and Biology (Review). J Appl Spectrosc 86, 1–26 (2019). https://doi.org/10.1007/s10812-019-00775-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-019-00775-8

Keywords

Navigation