Journal of Applied Spectroscopy

, Volume 85, Issue 6, pp 1101–1106 | Cite as

Discrimination of Brands of Strong Aroma Type Liquors Using Synchronous Fluorescence Spectroscopy and Chemometrics Methods

  • Z.-W. ZhuEmail author
  • G.-Q. Chen
  • Y.-M. Wu
  • Y. Xu
  • T. Zhu

The application of synchronous fluorescence spectroscopy combined with chemometrics using pretreated spectra was explored to develop a rapid, low-cost, and nondestructive method for discriminating between brands of different strong aroma type liquors. Principal component analysis, partial least square discriminant analysis, support vector machine, and back-propagation artificial neural network techniques were used to classify and predict the brands of liquor samples. Compared with the other models, the SVM model achieved the best results, with an identification rate of 100% for the calibration set, and 96.67% for the prediction set. The overall results showed that synchronous fluorescence spectroscopy with an efficient chemometrics method can be used successfully to identify different brands of liquor.


Chinese liquor synchronous fluorescence spectroscopy discrimination of liquors chemo metrics of discrimination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Fan and M. C. Qian, J. Agric. Food Chem., 54, 2695–2704 (2006).CrossRefGoogle Scholar
  2. 2.
    Y. Xu, D. Wang, W. Fan, X. Mu, and J. Chen., Adv. Biochem. Eng. Biotechnol., 122, 189–233 (2010).Google Scholar
  3. 3.
    Y. Ma, D. Huo, H. Qin, C. Shen, P. Yang, and C. Hou, J. Appl. Spectrosc., 84, 361–368 (2017).Google Scholar
  4. 4.
    P. Cheng, W. Fan, and Y. Xu, Food Res. Int., 54, 1753–1760 (2013).CrossRefGoogle Scholar
  5. 5.
    P. Cheng, W. Fan, and Y. Xu, Food Control, 35, 153–158 (2014).CrossRefGoogle Scholar
  6. 6.
    W. Fan and M.C. Qian, J. Agric. Food Chem., 53, 7931–7938 (2005).CrossRefGoogle Scholar
  7. 7.
    P. Wang, Z. Li, T. Qi, X. Li, and S. Pan, Food Chem., 169, 230–240 (2015).CrossRefGoogle Scholar
  8. 8.
    H. Qin, D. Huo, L. Zhang, L. Yang, S. Zhang, M. Yang, C. Shen, and C. Hou, Food Res. Int., 45, 45–51 (2012).CrossRefGoogle Scholar
  9. 9.
    M. Liu, X. Han, K. Tu, L. Pan, J. Tu, L. Tang, P. Liu, G. Zhan, Q. Zhong, and Z. Xiong, Food Control, 26, 564–570 (2012).CrossRefGoogle Scholar
  10. 10.
    Q. Zhang, C. Xie, S. Zhang, A. Wang, B. Zhu, L. Wang, and Z. Yang, Sens. Actuators B: Chem., 110, 370–376 (2005).CrossRefGoogle Scholar
  11. 11.
    Z. Li, P. Wang, C. Huang, H. Shang, S. Pan, and X. Li, Food Anal. Methods, 7, 1337–1344 (2014).CrossRefGoogle Scholar
  12. 12.
    V. Uríčková and J. Sádecká, Spectrochim. Acta, A, 148, 131–137 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    D. Dong, W. Zheng, W. Wang, X. Zhao, L. Jiao, and C. Zhao, Food Chem., 155, 45–49 (2014).CrossRefGoogle Scholar
  14. 14.
    H. Qiao, W. Zhang, and W. Wang, J. Biosci. Bioeng., 115, 405–411 (2013).CrossRefGoogle Scholar
  15. 15.
    Y. Wan, F. Pan, and M. Shen, Spectrochim. Acta, A, 96, 605–610 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    D. Patra and A. K. Mishra, Trends Anal. Chem., 21, 787–798(2002).CrossRefGoogle Scholar
  17. 17.
    F. Cui, Q. Zhang, X. Yao, H. Luo, Y. Yang, L. Qin, G. Qu, and Y. Lu, Pestic. Biochem. Phys., 90, 126–134 (2008).CrossRefGoogle Scholar
  18. 18.
    J. Sádecká, J. Tóthová, and P. Májek, Food Chem., 117, 491–498 (2009).CrossRefGoogle Scholar
  19. 19.
    J. Sádecká, V. Uríčková, K. Hroboňová, and P. Májek, Food Anal. Methods, 8, 58–69 (2015).CrossRefGoogle Scholar
  20. 20.
    M. Tomková, J. Sádecká, and K. Hroboňová, Food Anal. Methods, 8, 1258–1267 (2015).CrossRefGoogle Scholar
  21. 21.
    J. Sádecká, M. Jakubíková, P. Májek, and A. Kleinová, Food Chem., 196, 783–790 (2016).CrossRefGoogle Scholar
  22. 22.
    J. Tan, R. Li, and Z. Jiang, F ood Chem., 184, 30–36 (2015).CrossRefGoogle Scholar
  23. 23.
    H. Hotelling, J. Educ. Psychol., 24, 417–520 (1933).CrossRefGoogle Scholar
  24. 24.
    W. Li, L. Bagnol, M. Berman, R. A. Chiarella, and M. Gerber, Int. J. Pharm., 380, 49–54 (2009).CrossRefGoogle Scholar
  25. 25.
    P. Geladi and B. Kowalski, Ana l. Chim. Acta, 185, 1–17 (1986).CrossRefGoogle Scholar
  26. 26.
    M. Barker and W. Rayens, J. Ch emometr., 17, 166–173 (2003).Google Scholar
  27. 27.
    C. Cortes and V. Vapnik, Mach. Learn., 20, 273–297 (1995).Google Scholar
  28. 28.
    U. Thissen, M. Pepers, B. Üstün, W. J. Melssen, and L. M. C. Buydens, Chemometr. Intell. Lab. Syst., 73, 169–179 (2004).CrossRefGoogle Scholar
  29. 29.
    S. S. Keerthi and C. Lin, Neural Comput., 15, 1667–1689 (2003).CrossRefGoogle Scholar
  30. 30.
    R. H. Nielsen, Proc. Int. Joint Conf. Neural Networks, IEEE Press, 593–605 (1989).Google Scholar
  31. 31.
    J. J. More, Lect. Notes Math., 630, 105–116 (1978).CrossRefGoogle Scholar
  32. 32.
    Y. Liu, X. Luo, Z. Shen, J. Lu, and X. Ni, Opt. Rev., 13, 303–307 (2006).CrossRefGoogle Scholar
  33. 33.
    S. Wagner, K. Scholz, M. Donegan , L. Burton, J. Wingate, and W. Volkel, Anal. Chem., 78, 1296–1305 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Z.-W. Zhu
    • 1
    Email author
  • G.-Q. Chen
    • 1
  • Y.-M. Wu
    • 1
  • Y. Xu
    • 2
  • T. Zhu
    • 1
  1. 1.School of ScienceJiangnan UniversityWuxiChina
  2. 2.School of BiotechnologyJiangnan UniversityWuxiChina

Personalised recommendations