Skip to main content
Log in

Method of Correlation Coefficient Optimization Used in UV-vis Spectrophotometric Analysis for Effluent in Catalytic Ozonation

  • Published:
Journal of Applied Spectroscopy Aims and scope

A wavelength selection method for spectrophotometric analysis, named correlation coefficient optimization (CCO), was employed for reagent-free analysis of organics (humic acid) in real sewage. The modeling set of CCO uses the effluent in the ozonation process of humic acid (HA) solution. In order to verify the relationship between HA concentration and absorbance at the selected wavelength, HA solutions with different mass concentrations were prepared as a validation set. The study showed that the absorbance at 300 nm could be a good quantitative indication of HA concentration. In addition, the absorbance at 300 nm was applied to analyze the HA concentration in the ozonation process. The decomposition of HA fits the pseudo-first-order kinetic model and has a linear relationship with pH and (T – 20)2 (T is reaction temperature).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Gotzmannova and V. Kuban, Collect. Czech. Chem. Commun., 45, No. 6, 1793–1804 (1980).

    Article  Google Scholar 

  2. W. Kaye, D. Barber, and R. Marasco, Anal. Chem., 52, No. 3, A437 (1980).

    Google Scholar 

  3. G. Langergraber, N. Fleischmann, F. Hofstaedter, and A. Weingartner, Water Sci. Technol., 49, No. 1, 9–14 (2004).

    Article  Google Scholar 

  4. A. Torres and J. L. Bertrand-Krajewski, Water Sci. Technol., 57, No. 4, 581–588 (2008).

    Article  Google Scholar 

  5. P. Westerhoff, G. Aiken, G. Amy, and J. Debroux, Water Res., 33, No. 10, 2265–2276 (1999).

    Article  Google Scholar 

  6. J. Peuravuori and K. Pihlaja, Anal. Chim. Acta, 337, No. 2, 133–149 (1997).

    Article  Google Scholar 

  7. K. Muller, R. M. Peters, and E. Alkhatib, Abs. Pap. ACS, 219, U323-U324 (2000).

    Google Scholar 

  8. M. Kulovaara, N. Corin, P. Backlund, and J. Tervo, Chemosphere, 33, No. 5, 783–790 (1996).

    Article  ADS  Google Scholar 

  9. H.-J. Fan, I.-W. Chen, M.-H. Lee, and T. Chiu, Chemosphere, 67, No. 8, 1647–1652 (2007).

    Article  ADS  Google Scholar 

  10. J. P. Kaptijn, Ozone Sci. Eng., 19, No. 4, 297–305 (1997).

    Article  Google Scholar 

  11. F. P. Logemann and J. H. J. Annee, Water Sci. Technol., 35, No. 4, 353–360 (1997).

    Article  Google Scholar 

  12. U. Jans and J. Hoigne, Ozone Sci. Eng., 20, No. 1, 67–90 (1998).

    Article  Google Scholar 

  13. H. Cao, L. Xing, G. Wu, Y. Xie, S. Shi, Y. Zhang, D. Minakata, and J. C. Crittenden, Appl. Catal., B, 146, 169–176 (2014).

    Article  Google Scholar 

  14. B. Kasprzyk and J. Nawrocki, Ozone Sci. Eng., 24, No. 1, 63–68 (2002).

    Article  Google Scholar 

  15. F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, and R. Rosei, Sci., 309, No. 5735, 752–755 (2005).

    Article  ADS  Google Scholar 

  16. H.-Y. Li, H.-F. Wang, Y.-L. Guo, G.-Z. Lu, and P. Hu, Chem. Commun., 47, No. 21, 6105–6107 (2011).

    Article  Google Scholar 

  17. H. Qin, H. Chen, X. Zhang, G. Yang, and Y. Feng, J. Chem Technol. Biotechnol., 89, No. 9, 1402–1409 (2014).

    Article  Google Scholar 

  18. E. M. Thurman and R. L. Malcolm, Environ. Sci. Technol., 15, No. 4, 463–466 (1981).

    Article  ADS  Google Scholar 

  19. F. J. Gonzalez-Vila, F. Martin, J. C. Del Rio, and R. Fruend, Sci. Total Environ., 117118, 335–343 (1992).

  20. B. S. Xing, J. J. Pignatello, and B. Gigliotti, Environ. Sci. Technol., 30, No. 8, 2432–2440 (1996).

    Article  ADS  Google Scholar 

  21. H. Qin, Q. Dong, H. Chen, G. Yang, and X. Zhang, Ozone Sci. Eng., 37, No. 4, 371–378 (2015).

    Article  Google Scholar 

  22. Y. F. Chen, J. M. Chen, T. Pan, Y. Han, and L. J. Yao, Anal. M ethod, 7, No. 14, 5780–5786 (2015).

    Article  Google Scholar 

  23. U. von Gunten, Water Res., 37, No. 7, 1443–1467 (2003).

    Article  Google Scholar 

  24. A. Kerc, M. Bekbolet, and A. M. Saatci, Int. J . Photoenergy, 5, No. 2, 75–80 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglin Chen.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 4, p. 683, July–August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Chen, H. & Zhang, X. Method of Correlation Coefficient Optimization Used in UV-vis Spectrophotometric Analysis for Effluent in Catalytic Ozonation. J Appl Spectrosc 85, 760–770 (2018). https://doi.org/10.1007/s10812-018-0716-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0716-3

Keywords

Navigation