Skip to main content
Log in

Breit and QED Effects in Spectra of the 4s2 1S0−4s4p 3P1,1P1 Transitions in the Zn Sequence

  • Published:
Journal of Applied Spectroscopy Aims and scope

The 4s2–4s4p E1 transitions for Zn-like ions from Z in the range 30–92 are calculated using the multiconfi guration Dirac–Hartree–Fock (MCDHF) method. The results obtained are in good agreement with other theoretical and experimental data and demonstrate the applicability of this method to high-precision atomic structure calculations of both few-electron systems and large atomic systems, such as Zn-like ions, along the entire isoelectronic sequence. We also report herein the calculations of many-electron quantum electrodynamic (QED) and Breit effects for the 3P0, 3P1, 3P2, and 1P1 states for all Zn-like ions in the range 30 ≤ Z ≤ 100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Hu, G. Jiang, J.-M. Yang, C.-K. Wang, X.-F. Zhao, and H.-P. Zang, Chin. Phys. B, 20, 063103 (2011).

  2. F. Hu, J.-M. Yang, C.-K. Wang, X.-F. Zhao, H.-P. Zang, G. Jiang, and L.-H. Hao, At. Data Nucl. Data Tables, 98, 301 (2012).

  3. F. Hu, G. Jiang, J. M. Yang, C. K. Wang, X. F. Zhao, and L. H. Hao, Eur. Phys. J. D, 61, 15 (2011).

  4. U. I. Safronova and M. S. Safronova, J. Phys. B, 43, 074025 (2010).

  5. M. H. Chen and K. T. Cheng, J. Phys. B, 43, 074019 (2010).

  6. S. A. Blundell, Can. J. Phys., 87, 55 (2009).

    Article  ADS  Google Scholar 

  7. Y. Liu, R. Hutton, Y. Zou, M. Andersson, and T. Brage, J. Phys. B, 39, 3147 (2006).

  8. M. J. Vilkas and Y. Ishikawa, Phys. Rev. A, 72, 032512 (2005).

  9. E. Biémont, P. Quinet, B. C. Fawcett, Phys. Scr., 39, 562 (1989).

    Article  ADS  Google Scholar 

  10. H.-S. Chou, H.-C. Chi, and K.-N. Huang, Phys. Rev. A, 49, 2394 (1994).

    Article  ADS  Google Scholar 

  11. L. J. Curtis, J. Opt. Soc. Am. B, 2, No. 3, 407–410 (1985).

    Article  ADS  Google Scholar 

  12. S. B. Utter, P. Beiersdorfer, and E. Träbert, Can. J. Phys., 81, 911 (2003).

    Article  ADS  Google Scholar 

  13. J. Reader, J. D. Gillaspy, D. Osin, and Yu. Ralchenko, J. Phys. B, 47, 145003 (2014).

  14. J. Sugar, V. Kaufman, D. H. Baik, Y.-K. Kim, and W. L. Rowan, J. Opt. Soc. Am. B, 8, 1795 (1991).

    Article  ADS  Google Scholar 

  15. U. Litzén and J. Reader, Phys. Rev. A, 36, 5159 (1987).

    Article  ADS  Google Scholar 

  16. Y. A. Podpaly, J. D. Gillaspy, J. Reader, and Yu. Ralchenko, J. Phys. B, 48, 025002 (2015).

  17. D. Kilbane, G. O'Sullivan, J. D. Gillaspy, Yu. Ralchenko, and J. Reader, Phys. Rev. A, 86, 042503 (2012).

  18. D. Kilbane, G. O'Sullivan, Y. A. Podpaly, J. D. Gillaspy, J. Reader, and Yu. Ralchenko, Eur. Phys. J. D, 68, 222 (2014).

  19. E. Träbert, J. Clementson, P. Beiersdorfer, J. A. Santana, and Y. Ishikawa, Can. J. Phys., 89, 639 (2011).

    Article  ADS  Google Scholar 

  20. I. N. Draganić, Yu. Ralchenko, J. Reader, J. D. Gillaspy, J. N. Tan, J. M. Pomeroy, S. M. Brewer, and D. Osin, J. Phys. B, 44, 025001 (2011); Erratum: 44, 179801 (2011).

  21. E. Träbert, J. Clementson, P. Beiersdorfer, J. A. Santana, and Y. Ishikawa, Phys. Rev. A, 82, 062519 (2010).

  22. J. P. Desclaux and P. Indelicato, MCDFGME code, a MultiConfi guration Dirac Fock and General Matrix Elements program, 2005 (unpublished), http://dirac.spectro.jussieu.fr/mcdf.

  23. F. A. Parpia, C. Froese Fischer, and I. P. Grant, Comput. Phys. Commun., 94, 249 (1996).

  24. J. Olsen, M. R. Godefroid, P. A. Jonsson, P. A. Malmquist, and F. C. Froese, Phys. Rev. E, 52, 4499 (1995).

    Article  ADS  Google Scholar 

  25. C. F. Fischer, T. Brage, and P. A. Jonsson, Computational Atomic Structure, Institute of Physics Publishing, Bristol, 52 (1997).

  26. X. B. e2004).

  27. I. P. Grant, B. J. McKenzie, and P. H. Norrington, Comput. Phys. Commun., 21, 207 (1980).

  28. The National Institutes of Standards and Technology (NIST) Atomic Spectra Collection. http://physics.nist.gov/PhysRefData/ASD/levels_form.html.

  29. J. Reader, G. Luther, Phys. Rev. Lett., 45, 609 (1980).

    Article  ADS  Google Scholar 

  30. P. Quinet, E. Biémont, P. Palmeri, and E. Träbert, At. Data Nucl. Data Tables, 93, 711 (2007).

  31. S. A. Blundell, W. R. Johnson, M. S. Safronova, and U. I. Safronova, Phys. Rev. A, 77, 032507 (2008).

  32. J. Fleming and A Hibbert, Phys. Scr., 51, 339 (1995).

    Article  ADS  Google Scholar 

  33. E. H. Pinnington, W. Ansbacher, and J. A. Kernahan, J. Opt.Soc. Am. B, 1, 30 (1984).

  34. E. Träbert and E. H. Pinnington, Can. J. Phys., 71, 128 (1993).

    Article  ADS  Google Scholar 

  35. T. Andersen and G. Sørensen, J. Quantum Spectrosc. Radiat. Transfer, 13, 369 (1973).

  36. T. Andersen, P. Eriksen, O. Poulsen, and P. S. Ramanujam, Phys. Rev. A, 20, 2621 (1979).

    Article  ADS  Google Scholar 

  37. J. L. Bahr, E. H. Pinnington, J. A. Kernahan, and J. A. O'Neill, Can. J. Phys., 60, 1108 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. Hao.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 4, p. 679, July–August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, L.H., Liu, J.J. Breit and QED Effects in Spectra of the 4s2 1S0−4s4p 3P1,1P1 Transitions in the Zn Sequence. J Appl Spectrosc 85, 730–737 (2018). https://doi.org/10.1007/s10812-018-0712-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0712-7

Keywords

Navigation