Skip to main content
Log in

Properties of the Fundamental Optical Functions of Magnesium Silicide

  • Published:
Journal of Applied Spectroscopy Aims and scope

The spectra of 16 optical Mg2Si functions in the range from 0 to 11 eV at 77 K are determined. They contain five maxima and shoulders due to interband transitions and metastable excitons, as well as the maxima of bulk and surface plasmons at ~9.56 and ~7.30 eV. Their peculiarities and general patterns of behavior are established. Calculations were performed based on a well-known experimental reflection spectrum in the range from 0 to 11 eV at 77 K. The integral spectra of the imaginary parts of the permittivity ε2(E), characteristic bulk (–Im ε–1), and surface (–Im (1 + ε)–1) energy losses of electrons are expanded into elementary components in the region from 2 to 5 eV. The main parameters of the transition components were determined, including the energies of their maxima and oscillator strengths. Calculations were carried out using computer programs based on the Kramers–Kronig relations and known analytical formulas for the correlation between optical functions, as well as an improved nonparametric method of combined Argand diagrams taking into account the effective number of valence electrons participating in the formation of individual bands. Instead of five maxima and shoulders of the integral spectra, 17 elementary bands with oscillator strengths in the range from 0.0003 to 1.92 were established. They are due to transverse and longitudinal type excitonic and interband transitions. Based on known theoretical calculations, we propose herein the localization and assumed nature of the optical transition bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Pulikkotil, D. J. Singh, S. Auluck, M. Saravanan, D. K. Misra, A. Dhar, and R. C. Budhani, Phys. Rev. B, 86, No. 15, 1555204(1–8) (2012).

    Article  Google Scholar 

  2. W. Lui, X. Tan, K. Yin, H. Lui, X. Tang, J. Shi, Q. Zhang, and C. Uher, Phys. Rev. Lett., 108, No. 16, 166601(1–5) (2012).

    ADS  Google Scholar 

  3. X. J. Tan, W. Lui, H. J. Lui, J. Shi, X. F. Tang, and C. Uher, Phys. Rev. B, 85, No. 20, 2051212(1–10) (2012).

    Article  Google Scholar 

  4. K. Kutorasinski, J. Tobola, and S. Kaprzyk, Phys. Rev. B, 87, No. 19, 195205(1–9) (2013).

  5. J. Bourgeois, J. Tobola, B. Wiendlocha, L. Chaput, P. Zwolenski, D. Berthebaud, F. Gascoin, Q. Recour, and H. Scherrer, Funct. Mater. Lett., 6, No. 5, 1340005(1–14) (2013).

    Article  ADS  Google Scholar 

  6. N. O. Folland, Phys. Rev., 158, 764–775 (1967).

    Article  ADS  Google Scholar 

  7. M. Y. Au-Yang and Marvin L. Cohen, Phys. Rev., 178, No. 3, 1358–1364 (1969).

    Article  ADS  Google Scholar 

  8. P. M. Lee, Phys. Rev., 135, No. 4A, 1110–1114 (1964).

    Article  ADS  Google Scholar 

  9. M. Y. Au-Yang and Marvin L. Cohen, Solid State Commun., 6, 855–858 (1968).

    Article  ADS  Google Scholar 

  10. A. Stella and D. W. Linch, J. Phys. Chem. Sol., 25, 1253–1259 (1964).

    Article  ADS  Google Scholar 

  11. L. A. Lott and D. W. Lynch, Phys. Rev., 141, No. 2, 681–687 (1966).

    Article  ADS  Google Scholar 

  12. D. McWilliams and D. W. Lynch, J. Opt. Soc. Am., 53, No. 2, 298–299 (1963).

    Article  Google Scholar 

  13. S. G. Kroitoru and V. V. Sobolev, Neorg. Mater., 2, No. 3, 50–54 (1966).

    Google Scholar 

  14. S. G. Kroitoru and V. V. Sobolev, Opt. Spektrosk., 21, No. 1, 91–93 (1966).

    ADS  Google Scholar 

  15. V. V. Sobolev, V. I. Donetskikh, E. B. Sokolov, and L. A. Roiter, FTT, 12, No. 10, 2687–2691 (1970).

    Google Scholar 

  16. W. J. Scouler, Phys. Rev., 178, No. 3, 1353–1357 (1969).

    Article  ADS  Google Scholar 

  17. V. V. Sobolev and V. V. Nemoskalenko, Methods of Computational Physics in Solid State Theory. Electronic Structure of Semiconductors [in Russian], Naukova Dumka, Kiev (1988).

  18. V. V. Sobolev, Optical Properties and Electronic Structure of Nonmetals. I . Introduction to Theory [in Russian], Inst. Komp. Issled., Moscow–Izhevsk (2012).

  19. V. V. Sobolev, Phys. Status Solidi, B, 49, 209–214 (1972).

    Article  Google Scholar 

  20. F. Aymerich and G. Mula, Phys. Status Solidi, 42, 697–704 (1970).

    Article  Google Scholar 

  21. O. Benhalal, A. Chahed, S. Kaksari, B. Abbar, B. Bouhafs, and H. Aourag, Phys. Status Solidi, B, 242, No. 10, 2022–2032 (2005).

  22. B. Arnaud and M. Alouani, Phys. Rev. B, 64, No. 3, 033202(1–4) (2001).

    Article  ADS  Google Scholar 

  23. G. Busch and U. Winkler, Physica, 20, No. 11, 1067–1072 (1954).

    Article  ADS  Google Scholar 

  24. U. Winkler, Helv. Phys. Acta, 28, 633–666 (1955).

    Google Scholar 

  25. A. Reifer, F. Fuchs, C. Rodl, A. Schleife, F. Bechstead, and R. Goldhahn, Phys. Rev. B, 84, No. 7, 075218(1–13) (2011).

    ADS  Google Scholar 

  26. V. V. Sobolev, Optical Properties and Electronic Structure of Monocarbon Media. I. Diamond. Graphite. Amorphous Carbon [in Russian], Izd-vo UdGU (UdSU Publishing house), Izhevsk (2016).

  27. V. V. Sobolev, Optical Properties and Electronic Structure of Monocarbon Media. II. Fullerites. Nanotubes. Graphene. Intercalated Graphite [in Russian], Izd-vo UdGU (UdSU Publishing house), Izhevsk (2016)

  28. V. Val. Sobolev and V. V. Sobolev, Semiconduct. Semimetal.,79, 201–228 (2004).

    Article  Google Scholar 

  29. A. I. Kalugin and V. V. Sobolev, Phys. Rev. B, 71, No. 11, 115112(1–7) (2005).

    Article  ADS  Google Scholar 

  30. V. V. Sobolev, Coll. Works of the IXth Int. Conf. ″Amorphous and Microcrystalline Semiconductors″ [in Russian], Izd-vo Politekhnicheskogo Universiteta (Polytechnic University Publishing House), St. Petersburg (2014), p. 25.

    Google Scholar 

  31. D. A. Merzlyakov, V. V. Sobolev, and V. Val. Sobolev, Coll. Works of the X Int. Conf. ″Amorphous and Microcrystalline Semiconductors″ [in Russian], Izd-vo Politekhnicheskogo Universiteta (Polytechnic University Publishing House), St. Petersburg (2016), p. 364.

    Google Scholar 

  32. A. N. Tikhonov and V. Ya. Arsenin, Methods for Solving Ill-Posed Problems [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  33. V. V. Sobolev, Optical Properties and Electronic Structure of Nonmetals. II . Simulation of Integral Spectra by Elementary Bands [in Russian], Inst. Komp. Issled., Moscow–Izhevsk (2012).

  34. S. Adachi, Phys. Rev. B, 38, No. 18, 12966–12976 (1988).

    Article  ADS  Google Scholar 

  35. I. F. Chen, C. M. Kwei, and C. J. Tung, Phys. Rev. B, 48, No. 7, 4373–7379 (1993).

    Article  ADS  Google Scholar 

  36. V. V. Sobolev, Intrinsic Energy Levels of Group A4 Solids [in Russian], Shtiintsa, Chisinau (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Val. Sobolev.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 4, pp. 576–583, July–August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobolev, V.V., Sobolev, V.V. Properties of the Fundamental Optical Functions of Magnesium Silicide. J Appl Spectrosc 85, 630–637 (2018). https://doi.org/10.1007/s10812-018-0697-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0697-2

Keywords

Navigation