Skip to main content
Log in

Effect of Heat Treatment on Madagascar Dravite Tourmaline: UV-Visible and Diffuse Reflectance Infrared Spectroscopic Characterization

  • Published:
Journal of Applied Spectroscopy Aims and scope

The color change and chemical behavior of Madagascar dravite when subjected to heating in air atmosphere were studied by energy-dispersive X-ray fluorescence spectrometry, UV-visible (UV-vis) spectroscopy and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Heat treatment was performed with temperatures of 500, 600, and 700°C for 2 h. Colors and color differences were measured and evaluated using CIELAB color measurement. The origin of color and its change after treatment are assessed via UV-vis spectra. The diffuse reflectance infrared spectra of the dravites revealed major absorption bands of OH, BO3, Si6O18, and R–OH (where R = Fe, Mg). The variation of infrared spectra with increasing temperature indicates the deformation of R–OH bonds in an octahedron and, further, the deformation of BO3 and Si6O18. The results of color change may be utilized to enhance the color or clarity in dravite tourmaline and for generating satisfactory color.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Henry, M. Novák, F. C. Hawthorne, A. Ertl, B. L. Dutrow, P. Uher, and F. Pezzotta, Am. Min., 96, 895–913 (2011).

    Article  ADS  Google Scholar 

  2. F. C. Hawthorne and D. J. Henry, Eur. J. Min., 11, 201–215 (1999).

    Article  Google Scholar 

  3. J. E. Shigley, R. E. Kane, and D. V. Manson, Am. Min., 71, 1214–1216 (1986).

    Google Scholar 

  4. G. R. Rossman and S. M. Mattson, Am. Min., 71, 599–602 (1986).

    Google Scholar 

  5. S. M. Mattson and G. R. Rossman, Phys. Chem. Min., 14, 163–171 (1987).

    Article  ADS  Google Scholar 

  6. M. N. Taran, G. R. Rossman, Am. Min., 87, 1148–1153 (2002).

    Article  ADS  Google Scholar 

  7. A. Ertl, U. Kolitsch, M. D. Dyar, J. M. Hughes, G. R. Rossman, A. Pieczka, D. J. Henry, F. Pezzotta, S. Prowatke, C.L. Lengauer, W. Körner, F. Brandstätter, C. A. Francis, M. Prem, and E. Tillmanns, Am. Min., 97, 1402–1416 (2012).

    Article  ADS  Google Scholar 

  8. B. J. Reddy, R. L. Frost, W. N. Martens, D. L. Wain, J. T. Kloprogge, Vib. Spectrosc., 44, 42–49 (2007).

    Article  Google Scholar 

  9. C. Castañeda, S. G. Eeckhout, G. M. da Costa, N. F. Botelho, and E. De Grave, Phys. Chem. Min., 33, 207–216 (2006).

    Article  ADS  Google Scholar 

  10. M. Y. M. Venkata Rao, A. T. Rao, and K. S. Rao, J. Geosci., 36, 123–134 (1992).

    Google Scholar 

  11. Y. Ahn, J. Seo, and J. Park, Vib. Spectrosc., 65, 165–175 (2013).

    Article  Google Scholar 

  12. G. Smith, Can. Min., 15, 500–507 (1977).

    Google Scholar 

  13. P. Bačík, D. Ozdín, M. Miglierini, P. Kardošová, M. Pentrák, and J. Haloda, Phys. Chem. Min., 38, 599–611 (2011).

    Article  ADS  Google Scholar 

  14. K. Nassau, Am. Min., 60, 710 (1975).

    Google Scholar 

  15. K. Nassau, Am. Min., 63, 219–229 (1978).

    Google Scholar 

  16. M. N. Taran, A. S. Lebedev, and A. N. Platonov, Phys. Chem. Min., 20, 209–220 (1993).

    Article  ADS  Google Scholar 

  17. A. Ertl, J. M. Hughes, S. Prowatke, G. R. Rossman, and D. London, Am. Min., 88, 1369–1376 (2003).

    Article  ADS  Google Scholar 

  18. G. E. Malashkevich, M.V. Korzhik, M. G. Livshits, V. B. Pavlenko, A. L. Blinov, and M. A. Borik, Sov. J. Glass Phys. Chem., 15, 397–407 (1990).

    Google Scholar 

  19. P. Thongnopkun and S. Ekgasit, Diam. Relat. Mater., 14, 1592–1599 (2005).

    Article  ADS  Google Scholar 

  20. T. Gonzalez-Carreño, M. Fernández, and J. Sanz, Phys. Chem. Miner., 15, 452–460 (1988).

    Article  ADS  Google Scholar 

  21. P. S. R. Prasad and D. S. Sarma, Gondwana Res., 8, 265–270 (2005).

    Article  ADS  Google Scholar 

  22. C. Zhao, L. Liao, Z. Xia, and X. Sun, Vib. Spectrosc., 62, 28–34 (2012).

    Article  Google Scholar 

  23. N. Ferrer and J. Nogues-Carulla, Diam. Relat. Mater., 5, 598–602 (1996).

    Article  ADS  Google Scholar 

  24. P. Makreski and G. Jovanovski, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 73, 460–467 (2009).

    Google Scholar 

  25. V. Šontevska, G. Jovanovski, P. Makreski, A. Raškovska, and B. Šoptrajanov, Acta Chim. Slov., 55, 757–766 (2008).

    Google Scholar 

  26. I. M. Reinitz, E. Fritsch, and J. E. Shigley, Diam. Relat. Mater., 7, 313–316 (1998).

    Article  ADS  Google Scholar 

  27. J.-L. Robert, Y. Fuchs, and J.-P. Gourdant, Phys. Chem. Miner., 23 (1996).

  28. V. Sontevska, G. Jovanovski, and P. Makreski, J. Mol. Struct., 834–836, 318–327 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Thongnopkun.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 4, pp. 562–569, July–August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thongnopkun, P., Naowabut, P. Effect of Heat Treatment on Madagascar Dravite Tourmaline: UV-Visible and Diffuse Reflectance Infrared Spectroscopic Characterization. J Appl Spectrosc 85, 616–623 (2018). https://doi.org/10.1007/s10812-018-0695-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0695-4

Keywords

Navigation