Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 3, pp 374–380 | Cite as

Optical Properties of Amorphous Perfluorinated Polymers in the Terahertz Range

  • M. S. KitaiEmail author
  • W. W. Volkov
  • A. A. Zharov
  • Ya. V. Zubavichus
  • P. V. Konarev
  • M. M. Nazarov
  • E. V. Polunin
  • Yu. E. Pogodina
  • V. I. Sokolov
Article
  • 26 Downloads

Novel amorphous perfluorinated polymers are synthesized and characterized using terahertz (THz) and x-ray spectra. The polymerization of such polymers in which all H atoms are replaced by F is examined. Their optical properties in the THz range show a record low index of refraction for solids in this range. The minimal possible index of refraction for such polymers is estimated. These materials are demonstrated to be highly transparent. The position of a weak absorption maximum in the range 1–2 THz is compared with the characteristic distance between the polymer structural elements that is obtained from an x-ray diffraction analysis of these materials.

Keywords

amorphous perfluorinated polymers terahertz range absorption and refraction spectra x-ray diffraction analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Ung and M. Scorobogatiy, in: Handbook of Terahertz Technology for Imaging, Sensing and Communications, D. Saeedkia (Ed.), Woodhead Publishing Series in Electronic and Optical Materials, No. 34 (2013), pp. 28–62.Google Scholar
  2. 2.
    M. S. Kitai and M. M. Nazarov, Izv. Vyssh. Uchebn. Zaved., Radiofiz., accepted for publication (2018) (Fractal absorption spectra of polymers in the low-frequency terahertz range).Google Scholar
  3. 3.
    V. I. Sokolov, V. E. Boiko, I. O. Goryachuk, S. M. Igumnov, S. I. Molchanova, Yu. E. Pogodina, and E. V. Polunin, Izv. Akad. Nauk, Ser. Khim., No. 7, 1284–1289 (2017).Google Scholar
  4. 4.
  5. 5.
    A. A. Zharov and I. A. Guzyaeva, Izv. Akad. Nauk, Ser. Khim., No. 6, 1199–1205 (2010).Google Scholar
  6. 6.
    A. A. Zharov, I. B. Konovalova, and E. V. Polunin, Izv. Akad. Nauk, Ser. Khim., No. 1, 233–236 (2016).Google Scholar
  7. 7.
    I. Pupeza, R. Wilk, and M. Koch, Opt. Express, 15, No. 7, 4335–4350 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    M. S. Kitai, M. M. Nazarov, D. A. Sapozhnikov, V. I. Bykov, M. V. Bermeshev, S. A. Bulgakova, and B. F. Shklyaruk, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 57, No. 12, 984–994 (2014).Google Scholar
  9. 9.
    E. P. J. Parrot and J. A. Zeitler, Appl. Spectrosc., 69, No. 1, 1–25 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    L. D. Landau and E. M. Lifshits, Electrodynamics of Complicated Media [in Russian], Nauka, Moscow (1982), 386–393.Google Scholar
  11. 11.
    J. Ostrovska and A. Narebska, Colloid Polym. Sci., 261, 93–98 (1983).CrossRefGoogle Scholar
  12. 12.
    B. N. Tarasevich, IR Spectra of Main Classes of Organic Compounds, Reference Materials [in Russian], MGU, Moscow (2012), p. 38.Google Scholar
  13. 13.
    A. Kh. Kuptsov and G. N. Zhizhin, Fourier–Raman and Fourier–IR Spectra of Polymers, Section 1.1.3 [in Russian], Fizmatlit, Moscow (2001).Google Scholar
  14. 14.
    L. N. Ignat’eva and V. M. Buznik, Zh. Ross. Khim. O′va im. D. I. Mendeleeva, LII, No. 3, 139–146 (2008).Google Scholar
  15. 15.
    L. N. Ignat’eva, A. K. Tsvetnikov, A. N. Lifshits, V. I. Saldin, and V. M. Buznik, Zh. Strukt. Khim., 43, No. 1, 69–73 (2002).Google Scholar
  16. 16.
    M. K. Yang, R. H. French, and E. W. Tokarsky, J. Micro/Nanolithogr., MEMS, MOEMS, 7, No. 3, 033010-1–033010-8 (2008).Google Scholar
  17. 17.
    A. Lacraz, M. Polis, A. Theodosiou, C. Koutsides, and K. Kalli, IEEE Photonics Technol. Lett., 27, No. 7, 693–696 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    G. de los Reyes, A. Quema, C. Ponseca, Jr., R. Pobre, R. Quiroga, S. Ono, H. Murakami, E. Estacio, N. Sarukura, K. Aosaki, Y. Sakane, and H. Sato, Appl. Phys. Lett., 89, 211119-1–211119-3 (2006).ADSGoogle Scholar
  19. 19.
    V. N. Korneev, V. A. Shlektarev, A. V. Zabelin, V. M. Aul’chenko, B. P. Tolochko, N. I. Ariskin, L. F. Lanina, and A. A. Vazina, J. Surf. Invest.: X-ray Synchrotron Neutron Technol., 6, 849–864 (2012).Google Scholar
  20. 20.
    A. P. Hammersley, J. Appl. Crystallogr., 49, 646–652 (2016).CrossRefGoogle Scholar
  21. 21.
    S. F. Kwan, F. C. Chen, and C. L. Choy, Polymer, 16, 481–488 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. S. Kitai
    • 1
    Email author
  • W. W. Volkov
    • 1
  • A. A. Zharov
    • 2
  • Ya. V. Zubavichus
    • 3
  • P. V. Konarev
    • 1
    • 3
  • M. M. Nazarov
    • 3
  • E. V. Polunin
    • 2
  • Yu. E. Pogodina
    • 2
  • V. I. Sokolov
    • 1
  1. 1.Federal Research Center “Crystallography and Photonics”Russian Academy of SciencesMoscowRussia
  2. 2.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations