Skip to main content
Log in

Lowering the Spectral Detection Threshold for Molecular Impurities in Gas Mixtures by Interference Multiplexing

  • Published:
Journal of Applied Spectroscopy Aims and scope

We consider the most feasible ways to significantly improve the sensitivity of spectroscopic methods for detection and measurement of trace concentrations of greenhouse gas molecules in the atmosphere. The proposed methods are based on combining light fluxes from a number of spectral components of the specified molecule on the same photodetector, taking into account the characteristic features of the transmission spectrum of devices utilizing multipath interference effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Skokov, Optical Spectral Instruments [in Russian], Mashinostroenie, Moscow (1984).

    Google Scholar 

  2. J. Meaburn, Detection and Spectrometry of Faint Light [Russian translation], Mir, Moscow (1979).

    Google Scholar 

  3. E. S. Permyakova and Yu. A. Tolmachev, Optical Memory and Neural Networks (Information Optics), 24, No. 1, 48–53 (2015).

  4. A. A. Kharkevich, Interference Control, Third Edition. Classics in Engineering Science: Electronics [in Russian], LIBROKOM, Moscow (2009).

    Google Scholar 

  5. Yu. A. Tolmachev, Vestn. St. Petersburg Univ., Series 4, No. 1, 246–252 (2013).

  6. https://www.gemini.edu/sciops/telescopes-and-sites/observing-condition-constraints/ir-transmission-spectra.

  7. M. A. El'yashevich, Atomic and Molecular Spectroscopy, Second Edition [in Russian], Éditorial URSS, Moscow (2001).

    Google Scholar 

  8. D. Brandwood, Fourier Transforms in Radar and Signal Processing, Artech House, Boston/London (2003).

    MATH  Google Scholar 

  9. J. P. Dakin and P. Chambers, Optical Chemical Sensors. NATO Science Series II: Mathematics, Physics and Chemistry, 224, 457–477 (2006); https://doi.org/https://doi.org/10.1007/1-4020-4611-1_22.

  10. J. Connes, in: High Resolution Infrared Spectroscopy [Russian translation, collected papers], Mir, Moscow (1972), pp. 201–305.

  11. K. A. Lukin, D. N. Tat'yanko, and Yu. P. Machekhin, Svitlotekhnika ta Elektroenergetika, No. 3, 26–30 (2011).

    Google Scholar 

  12. K. I. Tarasov, Spectral Instruments, Second Edition [in Russian], Mashinostroenie, Leningrad (1977).

    Google Scholar 

  13. Yu. A. Tolmachev, Operating Principles of an Optical Spectrometer: A New Look at Old Problems (college textbook) [in Russian], St. Petersburg University, St. Petersburg (2013).

    Google Scholar 

  14. J. M. G. Niederer, "The infrared spectrum of methane," Ph.D. Thesis, ETHN 19829; https://doi.org/https://doi.org/10.3929/ethz-a-00731686.

  15. Y. Minami, Y. Hayashi, J. Takeda, and I. Katayama, Appl. Phys. Lett., 103, 051103 (2013).

    Article  ADS  Google Scholar 

  16. E. S. Permyakova, T. V. Statsenko, and Yu. A. Tolmachev, Optical Memory and Neural Networks (Information Optics), 21, No. 2, 63–69 (2012).

    Article  Google Scholar 

  17. R. F. Furchgott, X. Ignarro, and F. Murad, "Nitric Oxide as a Signal Molecule in the Cardiovascular System," Nobel Prize for Medicine in 1998.

  18. R. T. Hall and J. M. Dowling, J. Chem. Phys., 45, No. 6, 1899–1903 (1966); http://dx.doi.org/https://doi.org/10.1063/1.1727868.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Tolmachev.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 2, pp. 335–340, March–April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, M.P., Tolmachev, Y.A. Lowering the Spectral Detection Threshold for Molecular Impurities in Gas Mixtures by Interference Multiplexing. J Appl Spectrosc 85, 349–354 (2018). https://doi.org/10.1007/s10812-018-0655-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0655-z

Keywords

Navigation