Skip to main content
Log in

Fluorescence and Raman Spectroscopy of Doped Nanodiamonds

  • Published:
Journal of Applied Spectroscopy Aims and scope

Raman and fluorescence spectroscopic techniques were used to study doped nanodiamonds synthesized at high pressure and high temperature (HPHT technique) and by chemical vapor deposition from the gas phase (CVD technique). For the CVD diamonds, a hundred-fold increase in fluorescence intensity of the silicon-vacancy centers normalized to the volume of the probe material was observed with an increase in synthesized diamond particle diameter from 150 to 300 nm. Graphitization temperature upon heating in the air significantly lower than for detonation nanodiamonds was found for the boron-doped HPHT nanodiamonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. I. Vlasov, A. A. Shiryaev, T. Rendler, S. Steinert, S.Y. Lee, D. Antonov, M. Vörös, F. Jelezko, A. V. Fisenko, L. G. Semjonova, J. Biskupek, U. Kaiser, O. I. Lebedev, I. Sildos, P. R. Hemmer, V. I. Konhov, A. Gali, and J. Wrachtrup, Nature Nanotechnol., 9, 54–58 (2014).

    Article  ADS  Google Scholar 

  2. A. A. Khomich, O. S. Kudryavtsev, A. P. Bol'shakov, A. V. Khomich, E. E. Ashkinazi, V. G. Ral'chenko, I. I. Vlasov, and V. I. Konov, Zh. Prikl. Spektrosk., 82, No. 2, 248–253 (2015) [J. Appl. Spectrosc., 82, 242–247 (2015)].

  3. A. Stacey, I. Aharonovich, S. Prawer, and J. E. Butler, Diamond Relat. Mater., 18, No. 1, 51–55 (2009).

    Article  ADS  Google Scholar 

  4. V. A. Davydov, A. V. Rakhmanina, S. G. Lyapin, I. D. Il'ichev, K. N. Boldyrev, A. A. Shiryaev, and V. N. Agafonov, Pis'ma ZhÉTF, 99, No. 10, 673–678 (2014) [JETP Lett., 99, No. 10, 585–589 (2014)].

  5. S. Heyer, W. Janssen. S. Turner, Y. G. Lu, W. S. Yeap, J. Verbeeck, K. Haenen, and A. Krueger, ACS Nano, 8, No. 6, 5757–5764 (2014).

    Article  Google Scholar 

  6. E. A. Ekimov, O. S. Kudryavtsev, A. A. Khomich, O. I. Lebedev, T. A. Dolenko, and I. I. Vlasov, Adv. Mater., 27, No. 37, 5518–5522 (2015).

    Article  Google Scholar 

  7. I. Aharonovich, S. Castelletto, D. A. Simpson, C. H. Su, A. D. Greentree, and S. Prawer, Rep. Progress Phys., 74, No. 7, 076501 (2011).

    Article  ADS  Google Scholar 

  8. T. Kondo, M. Horitani, H. Sakamoto, I. Shitanda, Y. Hoshi, M. Itagaki, and M. Yuasa, Chem. Lett., 42, No. 4, 352–354 (2013).

    Article  Google Scholar 

  9. T. Bautze, S. Mandal, O. A. Williams, P. Rodiere, T. Meunier, and C. Bauerle, Carbon, 72, 100–105 (2014).

    Article  Google Scholar 

  10. S. Mandal, T. Bautze, O. A. Williams, C. Naud, E. Bustarret, F. Omnes, P. Rodiere, T. Meunier, C. Bauerle, and L. Saminadayar, ACS Nano, 5, No. 9, 7144–7148 (2008).

    Article  Google Scholar 

  11. Y.R. Chang, H.Y. Lee, K. Chen, C.C. Chang, D.S. Tsai, C.C. Fu, T.S. Lim, Y.K. Tzeng, C.Y. Fang, C.C. Han, H.C. Chang, and W. Fann, Nature Nanotechnol., 3, 284–288 (2008).

    Article  Google Scholar 

  12. E. A. Ekimov, O. S. Kudryavtsev, S. Turner, S. Korneychuk, V. P. Sirotinkin, T. A. Dolenko, A. M. Vervald, and I. I. Vlasov, Phys. Status Solidi (a), 213, No. 10, 2582–2589 (2016).

    Article  ADS  Google Scholar 

  13. S. Prawer and R. Nemanich, Phil. Trans. Roy. Soc. London A, 362, No. 1824, 2537–2565 (2003).

    Article  ADS  Google Scholar 

  14. O. Shenderova, S. Hens, I. Vlasov, S. Turner, Y. Lu, G. van Tendeloo, A. Schrand, S. A. Burikov, and T. A. Dolenko, Particle & Particle Systems Characterization, 31, No. 5, 580–590 (2014).

    Article  Google Scholar 

  15. A. M. Vervald, E. A. Ekimov, O. S. Kudryavtsev, I. I. Vlasov, and T. A. Dolenko, Int. Soc. Opt. Phot., 9917, 991720 (2016).

    Google Scholar 

  16. E. Bourgeois, E. Bustarret, P. Achatz, F. Omnes, and X. Blasé, Phys. Rev. B, 74, 094509 (2006).

    Article  ADS  Google Scholar 

  17. K. Ushizawa, K. Watanabe, T. Ando, I. Sakeguchi, M. N. Gamo, Y. Sato, and H. Kanda, Diamond Relat. Mater., 7, Nos. 11/12, 1719–1722 (1998).

    Article  ADS  Google Scholar 

  18. A. C. Ferrari and J. Robertson, Phys. Rev. B, 64, 075414 (2001).

    Article  ADS  Google Scholar 

  19. A. M. Zaitsev, Optical Properties of Diamond. A Data Handbook, Springer, Berlin (2001).

    Book  Google Scholar 

  20. R. J. Zhang, S. T. Lee, and Y. W. Lam, Diamond Relat. Mater., 5, No. 11, 1288–1294 (1996).

    Article  ADS  Google Scholar 

  21. E. Bustarret, P. Achatz, B. Sacepe, C. Chapelier, C. Marcenat, L. Ortega, and T. Klein, Phil. Trans. Roy. Soc. London A, 366, No. 1863, 267–279 (2008).

    Article  ADS  Google Scholar 

  22. E. A. Ekimov, V. P. Sirotinkin, T. B. Shatalova, and S. G. Lyapin, Inorganic Mater., 51, No. 3, 225–229 (2015).

    Article  Google Scholar 

  23. H. Sumiya, K. Ikeda, K. Arimoto, and K. Harano, Diamond Relat. Mater., 70, 7–11 (2016).

    Article  ADS  Google Scholar 

  24. A. S. Barnard and M. Sternberg, J. Phys. Chem. B, 110, No. 39, 19307–19314 (2006).

    Article  Google Scholar 

  25. U. Jantzen, A. B. Kurz, D. S. Rudnickin, C. Shaftermeier, K. D. Jahnke, U. L. Andersen, V. A. Davydov, V. N. Agafonov, and A. Kubanek, New J. Phys., 18, 073036 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Kudryavtsev.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 2, pp. 280–284, March–April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryavtsev, O.S., Khomich, A.A., Sedov, V.S. et al. Fluorescence and Raman Spectroscopy of Doped Nanodiamonds. J Appl Spectrosc 85, 295–299 (2018). https://doi.org/10.1007/s10812-018-0647-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0647-z

Keywords

Navigation