Skip to main content
Log in

Silver Nanoparticles Formed in a Colloidal System and a Polymer Matrix

  • Published:
Journal of Applied Spectroscopy Aims and scope

The growth kinetics and particle-size distribution of Ag particles in a polyvinyl alcohol (PVA) composite, PVA film, and aqueous sol were studied using UV and visible spectroscopy, atomic force microscopy, and dynamic light scattering. A hypsochromic shift (55 nm) of the Ag nanoparticle (NP) surface plasmon absorption maximum was measured on going from the PVA composite to the film. The kinetics of Ag NP formation and their sizes were shown to depend considerably on UV irradiation, ultrasound action, and PVA concentration. It was established that UV irradiation accelerated Ag NP formation in the presence of reductants and destroyed the resulting NPs with a deficit of reductant. Partial destruction of the Ag NPs occurred under the influence of ultrasound whereas ultrasound action after UV irradiation reduced Ag+ on the clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Krutyakov, A. A. Kudrinskii, A. Yu. Olenin, and G. V. Lisichkin, Usp. Khim., 77, No. 3, 242–269 (2008).

    Article  Google Scholar 

  2. K. Szczepanowicz, J. Stefanska, R. P. Socha, and P. Warszynski, Physicochem. Probl. Miner. Process., 45, 85–98 (2010).

    Google Scholar 

  3. M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond, John Wiley & Sons, Hoboken, USA (2011), pp. 1–34.

    Book  Google Scholar 

  4. D. L. Feldheim and C. A. Foss, Jr. (Eds.), Metal Nanoparticles: Synthesis, Characterization, and Applications, Marcel Dekker, New York (2002), pp. 1–17.

  5. K. J. Klabunde and R. M. Richards (Eds.), Nanoscale Materials in Chemistry, John Wiley & Sons, Hoboken, USA (2009), pp. 1–14.

    Book  Google Scholar 

  6. N. G. Rambidi and A. V. Berezkin, Physical and Chemical Principles of Nanotechnology [in Russian], Fizmatlit, Moscow (2009), pp. 235–242.

    Google Scholar 

  7. D. Evanoff, Jr., and G. Chumanov, ChemPhysChem, 6, 1221–1231 (2005).

    Article  Google Scholar 

  8. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Sciencе, Vol. 25, Springer-Verlag, New York (1995), pp. 8–78.

    Book  Google Scholar 

  9. V. Agabekov, N. Ivanova, V. Dlugunovich, and I. Vostchula, J. Nanomater., ID 206384 (2012).

    Google Scholar 

  10. A. V. Vegera, ″Effect of Synthesis Conditions on the Colloid-Chemical Properties of Silver Nanoparticles, Candidate Dissertation, Moscow State University of Technologies and Management, Moscow (2006).

  11. V. E. Agabekov, A. L. Potapov, S. N. Shakhab, and N. A. Ivanova, Polim. Mater. Tekhnol., 1, No. 2, 6–35 (2015).

    Google Scholar 

  12. G. A. Gaddy, J. L. McLain, A. S. Korchev, B. L. Slaten, and G. Mills, J. Phys. Chem. B, 108, 14858–14865 (2004).

    Article  Google Scholar 

  13. D. A. Troitskii, ″Radiation-Chemical Reduction of Silver and Palladium in Aqueous Solutions,″ Candidate Dissertation, Institute of Physical Chemistry, RAS, Moscow (1997).

  14. B. G. Ershov, Ross. Khim. Zh., 45, No. 3, 20–30 (2001).

    Google Scholar 

  15. V. V. Sviridov, G. A. Branitskii, and S. K. Rakhmanov, Chemical Problems with Fabrication of New Materials and Technologies [in Russian], BSU, Minsk (2003), pp. 12–37.

    Google Scholar 

  16. A. L. Potapov and V. E. Agabekov, Adv. Mater. Lett., in press (2018).

  17. T. Huang and X.-H. N. Xu, J. Mater. Chem., 20, 9867–9876 (2010).

    Article  Google Scholar 

  18. J. Saade and C. B. de Araujo, Mater. Chem. Phys., 148, 1184–1193 (2014).

    Article  Google Scholar 

  19. B. Tang, J. An, X. Zheng, S. Xu, D. Li, J. Zhou, B. Zhao, and W. Xu, J. Phys. Chem. C, 112, 18361–18367 (2008).

    Article  Google Scholar 

  20. T. Parnklang, C. Lertvachirapaiboon, P. Pienpinijtham, K. Wongravee, C. Thammacharoen, and S. Ekgasit, RSC Adv., 3, 12886–12894 (2013).

    Article  Google Scholar 

  21. B. G. Ershov, Izv. Ross. Akad. Nauk, Ser. Khim., No. 1, 1–15 (1999).

  22. B. G. Ershov, N. L. Sukhov, and D. A. Troitskii, Radiat. Phys. Chem., 39, 127–131 (1992).

    ADS  Google Scholar 

  23. B. G. Ershov, Usp. Khim., 66, No. 2, 103–116 (1997).

    Article  Google Scholar 

  24. E. Janata, A. Henglein, and B. Ershov, J. Phys. Chem., 98, 10888–10891 (1994).

    Article  Google Scholar 

  25. B. G. Ershov, G. V. Ionova, and A. A. Kiseleva, Zh. Fiz. Khim., 69, No. 2, 260–270 (1995).

    Google Scholar 

  26. A. Potapov, Fotonika, No. 2, 62–79 (2017).

  27. A. L. Potapov, O. A. Daineko, N. A. Ivanova, V. E. Agabekov, and M. Bin-Hussain, Appl. Surf. Sci., 350, 121–128 (2015).

    Article  Google Scholar 

  28. M. Quinten and U. Kreibig, Appl. Opt., 32, 6173–6182 (1993).

    Article  ADS  Google Scholar 

  29. S. J. Oldenburg, Silver Nanoparticles: Properties and Applications, Sigma-Aldrich (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Potapov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 2, pp. 271–279, March–April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potapov, A.L., Agabekov, V.E. & Belyi, V.N. Silver Nanoparticles Formed in a Colloidal System and a Polymer Matrix. J Appl Spectrosc 85, 287–294 (2018). https://doi.org/10.1007/s10812-018-0646-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0646-0

Keywords

Navigation