Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 2, pp 260–266 | Cite as

Influence of γ-Irradiation on the Optical Properties of the Polyimide–YBa2Cu3O6.7 System

  • A. D. MuradovEmail author
  • N. E. Korobova
  • A. A. Kyrykbaeva
  • G. Sh. Yar-Mukhamedova
  • K. M. Mukashev
Article
  • 24 Downloads

Influence of γ-irradiation on the optical properties of a polyimide film and its polymer compositions with fillers of a dispersed powder of a high-temperature superconductor ҮBa2Cu3O6.7 (YBaCuO) with concentrations of 0.05, 0.10, and 0.50 wt.% was studied. It was established that γ-irradiation with a dose up to 600 kGy does not affect the transparency of polyimide films in the visible region of the spectrum. However, at irradiation doses of 250 and 600 kGy, a weakly expressed fine structure appears in the spectra of polyimide films in the range of 220–300 nm due to the contribution of the resulting diene structures to the optical transmission and the increased content of oxygen atoms. The YBaCuO filler and γ-irradiation cause the polyimide transition from the amorphous state to the crystalline state, which is manifested in a sharp change in the spectrum in the range of ~2.3–3.9 eV. A significant increase in the extinction coefficient was found in the composite containing 0.50 wt.% of the filler that is associated with an increase in the radius of action of structurally active fillers on the macromolecules of the matrix.

Keywords

polyimide composite material filler high-temperature superconductor optical properties gamma irradiation dose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Kravtsova, M. Umerzakova, N. Korobova, S. Timoshenkov, A. Matnishan, T. Akhnazaryan, and R. Iskakov, Proc. of 15th Int. Conf. Nanotechnol., 20 January, 2016, Rome, IEEE (2016), pp. 262–265.Google Scholar
  2. 2.
    E. P. Sheshin and L. V. Denisova, Vest. BGTU im. Shukhova (Herald of Belgorod State Technological University named after V.G. Shukhov), No. 12, 170–173 (2016).Google Scholar
  3. 3.
    V. M. Stankevich, Yu. M. Pleskachevsky, and V. V. Smirnov, Proc. of 4th Int. Conf. ″Interaction of Radiation with Solids″ [in Russian], 3–5 October, 2001, Minsk, BSU (2001), pp. 297–299.Google Scholar
  4. 4.
    S. Polessky, V. Zhadnov, M. Artyukhova, and V. Prokhorov, Komponenty i Tekhnologii, No. 9, 93–98 (2010).Google Scholar
  5. 5.
    M. Shtainberg and E. A. Zenitova, Vest. KGEU, No. 8, 67–71 (2012).Google Scholar
  6. 6.
    I. N. Shtefan, V. A. Lesnichnaya, S. R. Allyarov, and Yu. N. Smirnov, Plast. Mass, No. 12, 12–15 (2012).Google Scholar
  7. 7.
    Yu. A. Mikhaylin, Thermally Stable Polymers and Polymeric Materials [in Russian], Professiya, St. Petersburg (2006).Google Scholar
  8. 8.
    V. K. Kryzhanovskii, V. V. Burlov, A. D. Panimatchenko, and Yu. V. Kryzhanovskaya, Technical Properties of Polymer Materials [in Russian], Professiya, St. Petersburg (2005).Google Scholar
  9. 9.
    S. Tomczak, D. Marchant, S. Svejda, T. Minton, K. Timothy, A. Brunsvold, E. Grossman, G. Schatz, D. Troya, L.-P. Sun, Li Peng, and I. Gouzman, "Properties and Improved Space Survivability of POSS (polyhedral oligomeric silsesquioxane) Polyimides," Technical Paper DARP A443, 12 (2004).Google Scholar
  10. 10.
    A. C. Ferrari, B. Kleinsorge, G. Adamopoulos, J. Robertson, W. I. Milne, V. Stolojan, L. M. Brown, A. Libassi, and B. K. Tanner, J. Non-Crystal. Solids, 266269, 765–768 (2000).Google Scholar
  11. 11.
    A. I. Kupchishin, A. D. Muradov, B. G. Taipova, R. M. Iskakov, and M. Abilova, Proc. of 5th Int. Sci. Conf. ″Radiation-Thermal Effects and Processes in Inorganic Materials″ [in Russian], TPU Publishing House, Tomsk, 342–346 (2006).Google Scholar
  12. 12.
    A. D. Muradov, M. I. Kim, and A. I. Kupchishin, Proc. of 9th Int. Conf. ″Interaction of Radiation with Solids″ [in Russian], 20–22 September, 2011, BSU, Minsk (2011), pp. 150–153.Google Scholar
  13. 13.
    E. Lee, S. Yoon, Y. M. Um, W. Jo, C. W. Seo, H. Cheong, B. J. Kim, H. G. Lee, and G. W. Hong, Physica C, 463465, 732–735 (2007).Google Scholar
  14. 14.
    V. A. Maroni and J. L. Reeves, Appl. Spectrosc., 61, No. 4, 1–8 (2007).CrossRefGoogle Scholar
  15. 15.
    A. I. Kupchishin, A. D. Muradov, Zh. A. Omarbekova, and B. G. Taipova, Izv. VUZov, Ser. Fizika, 50, No. 2, 52–58 (2007).Google Scholar
  16. 16.
    F. F. Komarov, A. I. Kupchishin, A. D. Muradov, M. I. Kim, and A. V. Leontyev, Zh. Prikl. Spektrosk., 79, No. 6, 902–906 (2012) [F. F. Komarov, A. I. Kupchishin, A. D. Muradov, M. I. Kim, and A. V. Leontyev, J. Appl. Spectrosc., 79, No. 6, 896–900 (2012)].Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. D. Muradov
    • 1
    Email author
  • N. E. Korobova
    • 2
  • A. A. Kyrykbaeva
    • 1
  • G. Sh. Yar-Mukhamedova
    • 1
  • K. M. Mukashev
    • 1
  1. 1.al-Farabi Kazakh National UniversityAlmatyKazakhstan
  2. 2.National Research University of Electronic Technology (MIET)MoscowRussia

Personalised recommendations