Skip to main content
Log in

Application of Raman Spectroscopy for the Detection of Acetone Dissolved in Transformer Oil

  • Published:
Journal of Applied Spectroscopy Aims and scope

The CLRS detection characteristics of acetone dissolved in transformer oil were analyzed. Raman spectral peak at 780 cm–1 was used as the characteristic spectral peak for qualitative and quantitative analyses. The effect of the detection depth and the temperature was investigated in order to obtain good Raman signals. The optimal detection depth and temperature were set as 3 mm and room temperature. A quantitative model relation between concentration and the Raman peak intensity ratio I780/I893 was constructed via the least-squares method. The results demonstrated that CLRS can quantitatively detect the concentration of acetone in transformer oil and CLRS has potential as a useful alternative for accelerating the in-situ analysis of the concentration of acetone in transformer oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. K. Saha, IEEE Trans. Dielectr. Electr. Insul., 10, 903–917 (2003).

    Article  Google Scholar 

  2. M. Arshad and S. M. Islam, IEEE Trans. Dielectr. Electr. Insul., 18, 1591–1598 (2011).

    Article  Google Scholar 

  3. A. M. Emsley, X. Xiao, R. J. Heywood, and M. Ali, Proc. Inst. Electr. Eng. Sci. Meas. Technol., 147, 110–114 (2000).

    Article  Google Scholar 

  4. IEC60422, Mineral Insulating Oils in Electrical EquipmentSupervision and Maintenance Guidance (2005).

  5. M. Duval, IEEE Electr. Insul. Mag., 5, 22–27 (1989).

    Article  Google Scholar 

  6. G. C. Stevens and A. M. Emsley, Proc. Inst. Electr. Eng., Sci. Meas. Technol., 141, 324–334 (1994).

    Article  Google Scholar 

  7. L. Lundgaard, D. Allan, I. Hohlein, R. Clavreul, M. Dahlund, H.-P. Gasser, R. Heywood, C. Krause, M. C. Lessard, T. K. Saha, V. Sokolov, and A. Pablo, Ageing of Cellulose in Mineral-Oil Insulated Transformers, Cigre Brochuer (2007).

  8. J. Jalbert, R. Gilbert, Y. Denos, and P. Gervais, IEEE Trans. Power Del., 27, 514–520 (2012).

    Article  Google Scholar 

  9. S. Okabe, S. Kaneko, M. Kohtoh, and T. Amimoto, IEEE Trans. Dielectr. Electr. Insul., 17, 302–311 (2010).

    Article  Google Scholar 

  10. G. Ueta, T. Tsuboi, S. Okabe, and T. Amimoto, IEEE Trans. Dielectr. Electr. Insul., 19, 2216–2224 (2012).

    Article  Google Scholar 

  11. S. Okabe, G. Ueta, and T. Tsuboi, IEEE Trans. Dielectr. Electr. Insul., 20, 346–355 (2013).

    Article  Google Scholar 

  12. T. Ishii, T. Oshi, Y. Makino, and T. Hara, IEEE/PES T&D 2002 Asia Pacific, 3, 1834–1838 (2002).

    Google Scholar 

  13. O. H. Arroyo, I. Fofana, J. Jalbert, and R. Mohamed, IEEE Trans. Dielectr. Electr. Insul., 22, 3625–3632 (2015).

    Article  Google Scholar 

  14. A. C. T. Ko, L. P. Choo-Smith, M. Hewko, M. G. Sowa, C. C. S. Dong, and B. Cleghorn, Opt. Express, 14, 203–215 (2006).

    Article  ADS  Google Scholar 

  15. L. V. Doronina-Amitonova, I. V. Fedotov, A. B. Fedotov, K. V. Anokhin, M. L. Hu, C. Y. Wang, and A. M. Zheltikov, Opt. Lett., 37, 4642–4644 (2012).

    Article  ADS  Google Scholar 

  16. I. Pence and A. Mahadevan-Jansen, Chem. Soc. Rev. , 45, 1958–1979 (2016).

    Article  Google Scholar 

  17. M. Okuno and H. Hamaguchi, Opt. Lett., 35, 4096–4098 (2010).

    Article  ADS  Google Scholar 

  18. G. Romero, Y. Qiu, R. A. Murray, and S. E. Moya, Macromol. Biosci., 2, 234–241 (2013).

    Article  Google Scholar 

  19. I. Pence, D. Beaulieu, S. Horst, X. Bi, A. Herline, and D. Schwartz, A. Mahadevan-Jansen, Biomed. Opt. Express, 8, 524–535 (2017).

    Article  Google Scholar 

  20. J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, Biophys. J., 90, 648–656 (2006).

    Article  ADS  Google Scholar 

  21. R. J. Liao, J. Hao, G. Chen, and L. J. Yang, IEEE Trans. Dielectr. Electr. Insul., 19, 821–829 (2012).

    Article  ADS  Google Scholar 

  22. W. G. Chen, Z. L. Gu, J. X. Zou, F. Wan, and Y. Z. Xiang, IEEE Trans. Dielectr. Electr. Insul., 19, 915–921 (2016).

    Article  Google Scholar 

  23. P. Cossee and J. H. Schachtschneider, J. Chem. Phys., 44, 97–111 (1965).

    Article  ADS  Google Scholar 

  24. H. Torii, M. Musso, and M. G. Giorgini, J. Mol. Liq., 134, 129–135 (2007).

    Article  Google Scholar 

  25. F. H. Tukhvatullin, U. N. Tashkenbaev, A. Jumabaev, H. Hushvaktov, A. Absanov, and G. Sharifov, J. Nonlinear. Opt. Phys., 22, 277–282 (2013).

    Article  Google Scholar 

  26. M. Ku and H. Chung, Appl. Spectrosc., 53, 557–564 (1999).

    Article  ADS  Google Scholar 

  27. T. Somekawa, M. Kasaoka, F. Kawachi, Y. Nagano, M. Fujita, and Y. Izawa, Opt. Lett., 38, 1086–1088 (2013)

    Article  ADS  Google Scholar 

  28. G. J. Puppels, W. Colier, J. H. F. Olminkhof, C. Otto, F. F. M. Demul, and J. Greve, J. Raman Spectrosc., 22, 217–225 (1991).

    Article  ADS  Google Scholar 

  29. K. Maquelin, L. P. Choo-Smith, H. P. Endtz, H. A. Bruining, and G. J. Puppels, J. Clin. Microbiol., 40, 594–600 (2002).

    Article  Google Scholar 

  30. F. Zapata and C. Garcia-Ruiz, Anal. Chem., 88, 6726–6733 (2016).

    Article  Google Scholar 

  31. X. G. Yang and Q. L. Wu, Raman Spectroscopy Analysis and Application, Beijing, National Defense Industry Press (2008), pp. 3–10 (in Chinese).

  32. T. Somekawa, A. Tani, and M. Fujita, Appl. Phys. Express, 4, 112401–112403 (2011).

    Article  ADS  Google Scholar 

  33. T. Somekawa, M. Fujita, L. Yasukazu, K. Makoto, and N. Yoshitomo, IEEE Trans. Dielectr. Electr. Insul., 22, 229–231 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Gu.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 2, pp. 205–211, March–April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Z., Chen, W., Du, L. et al. Application of Raman Spectroscopy for the Detection of Acetone Dissolved in Transformer Oil. J Appl Spectrosc 85, 225–231 (2018). https://doi.org/10.1007/s10812-018-0636-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0636-2

Keywords

Navigation