Journal of Applied Spectroscopy

, Volume 85, Issue 1, pp 184–189 | Cite as

Effect of Boron Doping on High-Resolution X-Ray Diffraction Metrology

  • M. Faheem
  • Y. Zhang
  • X. Dai

The effect of boron (B) doping on high-resolution X-ray diffraction (HXRD) metrology has been investigated. Twelve samples of Si1–xGex films were epitaxially grown on Si (100) substrates with different thicknesses, germanium (Ge) concentrations and with/without B dopants. Secondary ion mass spectroscopy (SIMS) and HXRD were employed for measurements of B doping, Ge concentration, strain, and thickness of the layers. The SIMS results show the absence of B in two samples while the rest of the samples have B doping in the range of 8.40 × 1018–8.7 × 1020 atoms/cm3 with Ge concentration of 13.3–55.2 at.%. The HXRD measurements indicate the layers thickness of 7.07–108.13 nm along with Ge concentration of 12.82–49.09 at.%. The difference in the Ge concentration measured by SIMS and HXRD was found to deend on B doping. For the undoped samples, the difference is ~0.5 at.% and increases with B doping but with no linear proportionality. The difference in the Ge concentration was 7.11 at.% for the highly B-doped (8.7 × 1020 atoms/cm3) sample. The B doping influences the Si1–xGex structure, causing a change in the lattice parameter and producing tensile strains shifting Si1–xGex peaks towards Si (100) substrate peaks in the HXRD diffraction patterns. As a result, Vegard’s law is no longer effective and makes a high impact on the HXRD measurement. The comparison between symmetric (004) and asymmetric (+113, +224) reciprocal space mappings (RSM) showed a slight difference in Ge concentration between the undoped and lower B-doped samples. However, there is a change of 0.21 at.% observed for the highly doped Si1–xGex samples. RSM’s (+113) demonstrate the small SiGe peak broadening as B doping increases, which indicates a minor crystal distortion.


thin films SiGe boron doping high-resolution X-ray diffraction secondary ion mass spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Qing Hua Wang, Kourosh Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nature Nanotechnol., 7, 702–712 (2012).ADSGoogle Scholar
  2. 2.
    F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nature Photonics, 4, 611–622 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    M. Z. Mohd Yusoff, A. Mahyuddin, Z. Hassan, Y. Yusof, M. A. Ahmad, C. W. Chin, H. Abu Hassan, and M. J. Abdullah, Superlattices Microstruct., 60, 500–550 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    Wai Hoe Tham, Ding Shenp Ang, Lakshmi Kanta Bera, Surani Bin Dolmanan, Thirumaleshwara N. Bhat, and Vivian K. X. Lin, Sudhiranjan Tripathy, IEEE Trans. Electron. Devices, 63, No. 1, 345–351 ( 2016).ADSCrossRefGoogle Scholar
  5. 5.
    X. Chen, K. Liu, Q. C. Quyang, S. K. Jayanarayanan, and S. K. Banerjee, IEEE Trans. Electron. Devices, 48, 1975–1980 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    Kamal Prakash Pandey, Rakesh Kumar Singh, and Anil Kumar, Int. J. Adv. Res. Comput. Commun. Eng., 2, No. 4, 1831–1834 (2013).Google Scholar
  7. 7.
    A. K. Okyay, A. J. Pethe, D. Kuzum, S. Latif, D. A. B. Miller, and Kr. C. Saraswat, Opt. Lett., 32, No. 14, 2022–2024 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    M. Mitsui, K. Arimoto, J. Yamanaka, K Nakagawa, K. Sawano, and Y. Shiraki, Appl. Phys. Lett., 89, 192102–05 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    J.-S. Rieh, B. Jagannathan, D. R. Greenberg, M. Meghelli, A. Rylyakov, F. Guarin, Zh. Yang, D. C. Ahlgren, G. Freeman, P. Cottrell, and D. Harame, IEEE Trans. Microwave Theory Techn., 52, No. 10, 2390–2407 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    J. F. Woitok, C. C. G. Visser, and T. L. M. Scholtes, Mater. Sci. Eng., B89, 216–220 (2002).CrossRefGoogle Scholar
  11. 11.
    H. Rucker and B. Heinemann, Solid State Electron., 44, 783–789 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    M. Valden, S. Pak, X. Lai, and D. W. Goodman, Catal. Lett., 56, 7–10 (1998).CrossRefGoogle Scholar
  13. 13.
    N. Sugiyama, T. Mizuno, S. Takagi, M. Koike, and A. Kurobe, Thin Solid Films, 369, No. 3, 199–202 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    M. Faheem, A. Kumar, Y. Liang, and P. van Der Heide, Mater. Sci. Semiconductor Proc., 44, No. 15, 8–12 (2016).CrossRefGoogle Scholar
  15. 15.
    P. F. Fewster, J. Appl. Crystallogr., 25, 714–723 (1992).CrossRefGoogle Scholar
  16. 16.
    DIFFRAC Plus, Bruker’s User Manual, DOC-M88-EXX052, 7, Nos. 2–5 (2009).Google Scholar
  17. 17.
    Yong Seok Suh, M. S. Carroll, R. A. Levy, G. Bisognin, D. de Salvador, M. A. Sahiner, and C. A. King, IEEE Trans. Electron. Devices, 52, No. 11, 2416–2421 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    Y. Bogumilowicz and J. M. Hartmann, Thin Solid Films, 557, 4–9 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    N. R. Zangenberg, J. Fage-Pedersen, J. Lundsgaard Hansen, and A. Nylandsted Larsen, J. Appl. Phys., 94, 3883–3889 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    N. E. B. Cowern, P. C. Zalm, P. van der Sluis, D. J. Gravesteijn, and W. B. de Boer, Phys. Rev. Lett., 72, 2585–2588 (1994).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations


Personalised recommendations