Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 1, pp 119–125 | Cite as

Detection of Genetically Modified Sugarcane by Using Terahertz Spectroscopy and Chemometrics

  • J. Liu
  • H. Xie
  • B. Zha
  • W. Ding
  • J. Luo
  • C. Hu
Article

A methodology is proposed to identify genetically modified sugarcane from non-genetically modified sugarcane by using terahertz spectroscopy and chemometrics techniques, including linear discriminant analysis (LDA), support vector machine-discriminant analysis (SVM-DA), and partial least squares-discriminant analysis (PLS-DA). The classification rate of the above mentioned methods is compared, and different types of preprocessing are considered. According to the experimental results, the best option is PLS-DA, with an identification rate of 98%. The results indicated that THz spectroscopy and chemometrics techniques are a powerful tool to identify genetically modified and non-genetically modified sugarcane.

Keywords

terahertz spectroscopy genetically modified spectroscopy chemometrics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jianjun Liu, Lili Mao, Jinfeng Ku, and Jun He, Opt. Quantum Electron., 48, No. 2, 167–173 (2016).CrossRefGoogle Scholar
  2. 2.
    Jianjun Liu, Zhi Li, Fangrong Hu, Tao Chen, Yong Du, and Haitao Xin, J. Appl. Spectrosc., 82, No. 1, 104–110 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    Jianjun Liu, Zhi Li, Fangrong Hu, Tao Chen, Yong Du, and Haitao Xin, Opt. Spectrosc., 118, No. 1, 175–180 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    Jianjun Liu and Zhi Li, Optik, 125, No. 23, 6867–6869 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    K. Nakamura, H. Akiyama, N. Kawano, T. Kobayashi, K. Yoshimatsu, J. Mano, K. Kitta, K. Ohmori, A. Noguchi, K. Kondo, and R. Teshima, Food Chem., 141, 2618–2624 (2013).CrossRefGoogle Scholar
  6. 6.
    M. Vaitilingom, H. Pijnenburg, F. Gendre, and P. Brignon, J. Agr. Food Chem., 47, 5261–5266 (1999).CrossRefGoogle Scholar
  7. 7.
    G. Shan, S. K. Embrey, and B. W. Schafer, J. Agr. Food Chem., 55, 5974–5979 (2007).CrossRefGoogle Scholar
  8. 8.
    G. Liu, W. Su, Q. Xu, M. Long, and J. Zhou, S. Song, Food Control, 15, 303–306 (2004).CrossRefGoogle Scholar
  9. 9.
    Y. C. Shen, P. F. Taday, and M. C. Kemp, Proc. SPIE, 5619, 82–89 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    A. D. Burnett, W. H. Fan, P. C. Upadhya, J. E. Cunningham, M. D. Hargreaves, T. Munshi, H. G. Edwards, E. H. Linfield, and A. G. Davies, Analyst, 134, 1658–1668 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    J. El Haddad, F. de Miollis, J. Bou Sleiman, L. Canioni, P. Mounaix, and B. Bousquet, Anal. Chem., 86, 4927–4933 (2014).CrossRefGoogle Scholar
  12. 12.
    H. Wu, E. J. Heilweil, A. S. Hussain, and M. A. Khan, J. Pharm. Sci., 97, 970–984 (2008).CrossRefGoogle Scholar
  13. 13.
    Jianjun Liu and Lanlan Fan, Int. J. Light Electron Opt., 127, 1957–1961 (2016).CrossRefGoogle Scholar
  14. 14.
    Jianjun Liu, Zhi Li, Fangrong Hu, Tao Chen, and Aijun Zhu, Opt. Quantum Electron., 47, No. 2, 313–322 (2015).CrossRefGoogle Scholar
  15. 15.
    Jianjun Liu, Zhi Li, Fangrong Hu, Tao Chen, and Aijun Zhu, Optik, 125, No. 23, 6914–6919 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    Li Tiejun, Liu Jianjun, Shao Guifeng, and Fan Lanlan, Opt. Spectrosc., 120, No. 4, 660–665 (2016).CrossRefGoogle Scholar
  17. 17.
    S. Shrestha, F. Kazama, and T. Nakamura, J. Hydroinform., 10, 43–56 (2008).CrossRefGoogle Scholar
  18. 18.
    C. Kandemir-Cavas and E. Nasibov, Turk. J. Biol., 37, 54–61 (2012).CrossRefGoogle Scholar
  19. 19.
    Jianjun Liu, Zhi Li, Fangrong Hu, Tao Chen, Aijun Zhu, Yong Du, and Haitao Xin, Optik, 126, No. 19, 1872–1877 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    L. Xie, Y. Ying, T. Ying, H. Yu, and X. Fu, Anal. Chim. Acta, 584, 379–384 (2007).CrossRefGoogle Scholar
  21. 21.
    G. B. Alcântara, A. Bsrison, M. S. Santos, L. P. S. Santos, J. F. F. Toledo, and A. G. Ferreira, Orbital–Electron. J. Chem., 2, 41–52 (2010).Google Scholar
  22. 22.
    M. D. Salvador, A. M. Inarejos-Garcia, S. Gómez-Alonso, and G. Fregapane, Food Res. Int., 50, 250–258 (2013).CrossRefGoogle Scholar
  23. 23.
    R. Aparicio, M. T. Morales, R. Aparicio-Ruiz, N. Tena, and D. L. García-González, Food Res. Int., 54, 2025–2038 (2013).CrossRefGoogle Scholar
  24. 24.
    A. Koidis, M. T. Osorio, S. A. Haughey, and C. T. Elliott, Food Res. Int., 60, 66–75 (2014).CrossRefGoogle Scholar
  25. 25.
    C. A. Nunes, Food Res. Int., 60, 255–261 (2014).CrossRefGoogle Scholar
  26. 26.
    R. G. Brereton, Chemometrics for Pattern Recognition, Chichester, John Wiley and Sons Ltd. (2009).CrossRefGoogle Scholar
  27. 27.
    M. J. C. Pontes, R. K. H. Galvão, M. C. U. Araújo, P. N. T. Moreira, O. D. P. Neto, G. E. José, and T. C. B. Saldanha, Chemometr. Intell. Lab. Syst., 78, 11–18 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • J. Liu
    • 1
    • 3
  • H. Xie
    • 2
  • B. Zha
    • 2
  • W. Ding
    • 2
  • J. Luo
    • 2
  • C. Hu
    • 3
  1. 1.College of Food ScienceSouthwest UniversityChongqingChina
  2. 2.School of Electrical EngineeringJiujiang UniversityJiujiangChina
  3. 3.Guilin University of Electronic Technology, Guangxi Key Laboratory of Automatic Detecting Technology and InstrumentGuangxiChina

Personalised recommendations