Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 1, pp 109–118 | Cite as

The Optimal Wavelengths for Light Absorption Spectroscopy Measurements Based on Genetic Algorithm–Particle Swarm Optimization

  • Ge Tang
  • Biao Wei
  • Decao Wu
  • Peng Feng
  • Juan Liu
  • Yuan Tang
  • Shuangfei Xiong
  • Zheng Zhang
Article
  • 18 Downloads

To select the optimal wavelengths in the light extinction spectroscopy measurement, genetic algorithm–particle swarm optimization (GAPSO) based on genetic algorithm (GA) and particle swarm optimization (PSO) is adopted. The change of the optimal wavelength positions in different feature size parameters and distribution parameters is evaluated. Moreover, the Monte Carlo method based on random probability is used to identify the number of optimal wavelengths, and good inversion effects of the particle size distribution are obtained. The method proved to have the advantage of resisting noise. In order to verify the feasibility of the algorithm, spectra with bands ranging from 200 to 1000 nm are computed. Based on this, the measured data of standard particles are used to verify the algorithm.

Keywords

water particles detection light extinction spectroscopy particle size distribution optimal wavelength particle swarm genetic hybrid optimization algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Wang, G. Zheng, and X. S. Cai, Part. Part. Syst. Char., 11, No. 4, 309–314 (1994).CrossRefGoogle Scholar
  2. 2.
    L. Ma and R. K. Hanson, Appl. Phys. B: Lasers Opt., 81, No. 4, 567–576 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    R. So, R. Vingarzan, K. Jones, and M. Pitchford, J. Air Waste Manag., 65, No. 6, 707–720 (2015).CrossRefGoogle Scholar
  4. 4.
    M. H. Long, M. X. Su, X. S. Cai, Opt. Instrum., 32, No. 3, 18–22 (2010).Google Scholar
  5. 5.
    R. Todeschini, D. Galvagni, J. L. Vielchez, M. del Olmo, and N. Navas, Trends Anal. Chem., 18, No. 2, 93–98 (1999).CrossRefGoogle Scholar
  6. 6.
    R. M. Balabina and S. V. Smirnovb, Anal. Chim. Acta, 692, Nos. 1–2, 63–72 (2011).CrossRefGoogle Scholar
  7. 7.
    A. S. Bangalore, R. E. Shaffer, G. W. Small, and M. A. Arnold, Anal. Chem., 68, No. 23, 4200–4212 (1996).CrossRefGoogle Scholar
  8. 8.
    T. Lestander, R. Leardi, and P. Geladi, J. Near Infrared Spectrosc., 11, No. 1, 433 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    B. Cheng, D. Z. Chen, and X. H. Wu, Chin. J. Anal. Chem., 34, 123–126 (2006).ADSGoogle Scholar
  10. 10.
    J. Kennedy and R. Eberhart, IEEE Int. Conf. Neural Networks, 4, No. 8, 1942–1948 (1995).Google Scholar
  11. 11.
    J. A. Hageman, M. Streppel, R. Wehrens, and L. M. C Buydens, J. Chemom., 17, Nos. 8–9, 427–437 (2003).Google Scholar
  12. 12.
    L. Wang, X. Jian, and X. G. Sun, J. Mod. Opt., 59, No. 21, 1829–1840 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    X. G. Sun, H. Tang, and G. B. Yuan. Spectrosc. Spect. Anal., 28, No. 9, 1968–1973 (2008).Google Scholar
  14. 14.
    H. Tang, W. B. Zheng, X. X. Li, Opt. Precis. Eng., 18, No. 8, 1691–1698 (2010).Google Scholar
  15. 15.
    L. Wang and X. G. Sun, SPIE: Int. Soc. Opt. Eng., 8201, 82012H (2011).ADSGoogle Scholar
  16. 16.
    K. Premalatha and A. M. Natarajan, Int. J. Open Probl. Comput. Math., 2, No. 4, 597–608 (2009).MathSciNetGoogle Scholar
  17. 17.
    F. K. Zhang, S. W. Zhang, and G. Z. Ba, Adv. Mater. Res., 1014, 404–412 (2014).CrossRefGoogle Scholar
  18. 18.
    M. I. Mishchenko, L. D. Travis, and A. A. Lacis. Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press, Cambridge, Ch. 2, pp. 31–67 (2002).Google Scholar
  19. 19.
    E. Marioth, B. Koenig, A. H. Krause, and S. Loebbecke, Ind. Eng. Chem. Res., 39, No. 12, 4853–4857 (2000).CrossRefGoogle Scholar
  20. 20.
    M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, Academic Press, New York, Ch. 4, pp. 97–185 (1969).Google Scholar
  21. 21.
    M. Z. Li and D. Wilkinson, Chem. Eng. Sci., 56, No. 10, 3045–3052 (2001).CrossRefGoogle Scholar
  22. 22.
    D. L. Phillips, J. ACM, 9, No. 1, 84–97 (1962).CrossRefGoogle Scholar
  23. 23.
    S. Twomey, J. ACM, 10, No. 1, 97–101 (1963).MathSciNetCrossRefGoogle Scholar
  24. 24.
    B. R. Lienert, J. N. Porter, and S. K. Sharma, Appl. Opt., 40, No. 21, 3476–3482 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    Q. S. Xu and Y. Z. Liang, Chemometr. Intell. Lab., 56, No. 1, 1–11 (2001).CrossRefGoogle Scholar
  26. 26.
    M. Sudhakaran, P. Ajay-D-Vimalraj, and T. G. Palanivelu, J. Zhejiang Univ., 8, No. 6, 896–903 (2007).CrossRefGoogle Scholar
  27. 27.
    X. M. Yang, J. S. Yuan, J. Y. Yuan, and H. N. Mao, Appl. Math. Comput., 189, No. 2, 1205–1213 (2007).MathSciNetGoogle Scholar
  28. 28.
    P. Rosin and E. Rammler, J. Inst. Fuel, 7, 29–36 (1933).Google Scholar
  29. 29.
    A. Macías-García, E. M. Cuerda-Correa, and M. A. Díaz-Díez, Mater. Charact., 52, No. 2, 159–164 (2004).CrossRefGoogle Scholar
  30. 30.
    M. Jonasz and G. Fournier, Light Scattering by Particles in Water: Theoretical and Experimental Foundations, Academic Press, New York, Ch. 6, pp. 447–559 (2007).CrossRefGoogle Scholar
  31. 31.
    M. Daimon and A. Masumura, Appl. Opt., 46, No. 18, 3811–3820 (2007).ADSCrossRefGoogle Scholar
  32. 32.
    G. M. Jia, Z. Zhang, G. Z. Zhang, and W. H. Xiang, Acta Photon. Sin., 34, No. 10, 1473–1475 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ge Tang
    • 1
  • Biao Wei
    • 1
  • Decao Wu
    • 1
    • 2
  • Peng Feng
    • 1
  • Juan Liu
    • 1
  • Yuan Tang
    • 1
  • Shuangfei Xiong
    • 1
  • Zheng Zhang
    • 1
  1. 1.Chongqing University, Key Laboratory of Optoelectronic Technology and SystemsChongqingChina
  2. 2.Chongqing Industry Polytechnic CollegeChongqingChina

Personalised recommendations