Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 1, pp 98–102 | Cite as

Component Analysis and Identification of Black Tahitian Cultured Pearls From the Oyster Pinctada margaritifera Using Spectroscopic Techniques

  • L. Shi
  • Y. Wang
  • X. Liu
  • J. Mao
Article

Raman spectroscopy, ultraviolet, visible, and near infrared (UV–Vis–NIR) reflectance spectroscopy, and X-ray fluorescence (XRF) spectroscopy were used to characterize black Tahitian cultured pearls and imitations of these saltwater cultured pearls produced by γ-irradiation, and by coloring of cultured pearls with silver nitrate or organic dyes. Raman spectra indicated that aragonite was the major constituent of these four types of pearl. Using Raman spectroscopy at an excitation wavelength of 514 nm, black Tahitian cultured pearls exhibited characteristic 1100–1700 cm–1 bands. These bands were attributed to various organic components, including conchiolin and other black biological pigments. The peaks shown by saltwater cultured pearls colored with organic dyes varied with the type of dye used. Tahitian cultured and organic-dye-treated saltwater cultured pearls were easily identified by Raman spectroscopy. UV–Vis–NIR reflectance spectra showed bands at 408, 497, and 700 nm derived from porphyrin pigment and other black pigments. The spectra of dye-treated black saltwater pearls showed absorption peaks at 216, 261, 300, and 578 nm. The 261-nm absorption band disappeared from the spectra of γ-irradiated saltwater cultured pearls. This suggests the degradation of conchiolin in the γ-irradiated saltwater cultured pearls. XRF analysis revealed the presence of Ag on the surface of silver nitrate-dyed saltwater cultured pearls.

Keywords

black Tahitian cultured pearl Raman spectroscopy UV–Vis–NIR reflectance spectroscopy X-ray fluorescence spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.-C. Southgate and A.-C. Beer, Aquaculture, 187, 97–104 (2000).CrossRefGoogle Scholar
  2. 2.
    S. Karampelas, E. Fritsch, J.-P. Gauthier, and T. Hainschwang, G&G, 47, 31–35 (2011).CrossRefGoogle Scholar
  3. 3.
    H. Wang, X. W. Zhu, Y. N. Wang, M. M. Luo, and Z. G. Liu, Aquaculture, 358359, 292–297 (2012).Google Scholar
  4. 4.
    J. T. Wang, J. L. Liang, and M. S. Peng, Bull Miner. Petrol. Geochem., 18, 407–409 (1999).Google Scholar
  5. 5.
    J.-J. Myeong, J.-L. Sang, K. Yuri, G.-S. Jun, Y.-K. Hae, L. Yiheng, Y. Yoshiaki, and H.-L. Byeong, Opt Express, 19, 6420–6432 (2011).CrossRefGoogle Scholar
  6. 6.
    M. Yasunori and M. Tadaki, Jpn. J. Appl. Phys., 27, 235–239 (1988).Google Scholar
  7. 7.
    D. Habermann, A. Banerjee, J. Meijer, and A. Stephan, Nucl. Instrum. Methods Phys. Res., B181, 739–743 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    S. Karampelas, E. Fritsch, J.-Y. Mevellec, J.-P. Gauthier, S. Sklavounos, and T. Soldatos, J. Raman Spectrosc., 38, 217–230 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    J. Urmons, S.-K. Sharma, and F.-T. Mackenzie, Am. Mineral., 76, 641–646 (1991).Google Scholar
  10. 10.
    R.-W. Gauldie, S.-K. Sharma, and E. Volk, Comp. Biochem. Physiol., 118A, No. 3, 753–757 (1997).CrossRefGoogle Scholar
  11. 11.
    Y. L. Huang, J. G&G, 8, 5–8 (2006).Google Scholar
  12. 12.
    W. D. Liu, J. G&G, 5, 124–127 (2003).Google Scholar
  13. 13.
    G. Ismael, J. Alberto, I. Kazuma, T. Keisuke, S. Francisco, and W. Kazumasa, Pigment Cell Melanoma Res., 26, 917–923 (2013).CrossRefGoogle Scholar
  14. 14.
    Y. Liu, T.J. Lu, M. Tao, H. Chen, and J. Ke, Color Res. Appl., 38, 328–333 (2013).CrossRefGoogle Scholar
  15. 15.
    C. Blay, M. Sham-Koua, V. Vonau, R. Tetumu, P. Cabral, and C. L. Ky, Aquacult. Int., 22, 937–953 (2014).CrossRefGoogle Scholar
  16. 16.
    L. J. Qi, Y. L. Huang, and C. G. Zeng, J. G&G, 10, 20–24 (2008).Google Scholar
  17. 17.
    S. A. Davidenko, M. V. Kurik, Y. P. Piryatinskii, and A. B. Verbitsky, Mol. Cryst. Liq. Cryst., 426, 37–45 (2005).CrossRefGoogle Scholar
  18. 18.
    M. Paul and S. Tadeusz, Pigment Cell Res., 19, 572–594 (2006).CrossRefGoogle Scholar
  19. 19.
    L. P. Li and Z. H. Chen, J. G&G, 4, 16–21 (2002).Google Scholar
  20. 20.
    J.-P. Cuif, Y. Dauphin, C. Stoppa, and S. Beeck, Rev. Gemmol. AFG, 115, 9–11 (1993).Google Scholar
  21. 21.
    Y. Dauphin and J.-P. Cuif, Aquaculture, 133, 113–121 (1995).CrossRefGoogle Scholar
  22. 22.
    S. Elen, G&G, 38, 66–72 (2003).CrossRefGoogle Scholar
  23. 23.
    W. Wang, K. Scarratt, A. Hyatt, A.-H.-T. Shen, and M. Hall, G&G, 42, 222–235 (2006).CrossRefGoogle Scholar
  24. 24.
    Y. Iwahashi and S. Akamatsu, Fish Sci., 60, 69–71 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Material Science and EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations