Advertisement

Journal of Applied Spectroscopy

, Volume 85, Issue 1, pp 48–54 | Cite as

Temperature Effects on the Optical Parameters of a Passively Q-Switched Diode-Side Pumped Yb,Er-Laser

  • M. V. Bogdanovich
  • A. A. Izyneev
  • K. I. Lantsov
  • K. V. Lepchenkov
  • A. G. Ryabtsev
  • V. N. Pavlovskii
  • P. I. Sadovskii
  • I. E. Svitenkov
  • M. A. Shchemelev
Article

Temperature effects on photoluminescence and absorption spectra of the active medium (LGS-DE erbium phosphate glass) and passive Q-switch (MgAl2O4:Co2+ crystal) of a diode-side pumped Yb,Er-laser are studied. The obtained data are applied to an analysis of the spectral and energetic characteristics of compact erbium emitters. It is established that the dominant generation channel in the temperature range 233–328 K is the optical transition between lower Stark sublevels of Er3+ states 4I13/2 and 4I15/2 (λ = 1532.0–1533.9 nm). A rate-equation system taking into account thermal population of Stark sublevels of states 4I13/2 and 4I15/2 is proposed to describe the experimental temperature dependence of the threshold absorbed power of the pumping radiation. This system and the lasing threshold enable modeling of Yb,Er-emitter output energetic and temporal characteristics.

Keywords

erbium laser phosphate glass diode-side pump lasing spectra photoluminescence and absorption lasing threshold temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. S. Avdeev, Yu. D. Berezin, Yu. P. Gudakovskii, V. R. Muratov, A. G. Murzin, and V. A. Fromzel′, Kvantovaya Elektron., 5, 220–223 (1978).Google Scholar
  2. 2.
    A. Levoshkin, A. Petrov, and J. E. Montagne, Opt. Commun., 185, 399–405 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    A. Yu. Abazadze, V. N. Bykov, G. M. Zverev, A. A. Pleshkov, and V. A. Simakov, Kvantovaya Elektron., 32, 210–212 (2002).CrossRefGoogle Scholar
  4. 4.
    M. V. Bogdanovich, A. V. Grigor’ev, K. I. Lantsov, K. V. Lepchenkov, A. G. Ryabtsev, G. I. Ryabtsev, V. S. Titovets, and M. A. Shchemelev, Fotonika, 55, 58–63 (2016).Google Scholar
  5. 5.
    G. Karlsson, F. Laurell, J. Tellefsen, B. Denker, B. Galagan, V. Osiko, and S. Sverchkov, Appl. Phys. B: Lasers Opt., 75, 41–46 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    M. V. Bogdanovich, A. V. Grigor’ev, A. I. Enzhievskii, K. I. Lantsov, K. V. Lepchenkov, V. N. Pavlovskii, A. G. Ryabtsev, G. I. Ryabtsev, I. E. Svitenkov, V. S. Titovets, M. A. Shchemelev, and G. P. Yablonskii, in: Proc. 10th Belarusian-Russian Seminar ″Semiconducting Lasers and Systems Based on Them″ [in Russian], May 26–29, 2015, Minsk (2015), pp. 73–75.Google Scholar
  7. 7.
    M. V. Bogdanovich, A. V. Grigor'ev, V. A. Dlugunovich, A. V. Isaevich, A. V. Holenkov, K. V. Lepchenkov, K. I. Lantsov, A. G. Ryabtsev, G. I. Ryabtsev, M. A. Shchemelev, and U. S. Tsitovets, Zh. Prikl. Spektrosk., 83, Nos. 6–16 (Spec. Ed.), 467–468 (2016).Google Scholar
  8. 8.
    A. A. Izyneev, P. I. Sadovskii, and S. P. Sadovskii, Kvantovaya Elektron., 40, 389–392 (2010).CrossRefGoogle Scholar
  9. 9.
    G. I. Ryabtsev, T. V. Bezyazychnaya, M. V. Bogdanovich, A. V. Grigor’ev, V. V. Kabanov, Y. V. Lebiadok, A. G. Ryabtsev, and M. A. Shchemelev, Appl. Phys. B: Lasers Opt., 108, 283–288 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    G. I. Ryabtsev, M. V. Bogdanovich, A. V. Grigor’ev, V. V. Kabanov, E. V. Lebedok, K. V. Lepchenkov, A. G. Ryabtsev, and M. A. Shchemelev, Opt. Zh., 82, 3–10 (2015).Google Scholar
  11. 11.
    N. E. Alekseev, V. P. Gapontsev, M. E. Zhabotinskii, V. B. Kravchenko, and Yu. P. Rudnitskii, Laser Phosphate Glasses [in Russian], Nauka, Moscow (1980).Google Scholar
  12. 12.
    I. G. Kuchma, A. A. Petrov, and V. A. Fromzel’, Opt. Spektrosk., 71, 180–187 (1991).Google Scholar
  13. 13.
    N. V. Nikonorov, A. K. Przhevuskii, and S. G. Lunter, Proc. SPIE Int. Soc. Opt. Eng., 3622, 144–152 (1999).ADSGoogle Scholar
  14. 14.
    V. V. Bezotosnyi, Kh. Kh. Kumykov, and N. V. Markova, Kvantovaya Elektron., 24, 495–498 (1997).Google Scholar
  15. 15.
    G. T. Mikaelyan, Kvantovaya Elektron., 24, 222–227 (2006).CrossRefGoogle Scholar
  16. 16.
  17. 17.
    A. A. Kaminskii, Laser Crystals [in Russian], Nauka, Moscow (1975).zbMATHGoogle Scholar
  18. 18.
    S. D. Setzler, M. P. Francis, Y. E. Young, J. R. Konves, and E. P. Chicklis, IEEE J. Sel. Top. Quantum Electron., 11, 645–657 (2005).CrossRefGoogle Scholar
  19. 19.
    R. E. Bruce, K. O. White, J. B. Mason, and R. G. Buser, IEEE J. Quantum Electron., QE-5, 479 (1969).ADSCrossRefGoogle Scholar
  20. 20.
    G. R. Osche, IEEE J. Quantum Electron., QE-7, 252–253 (1971).ADSCrossRefGoogle Scholar
  21. 21.
    E. I. Galant, V. N. Kalinin, S. G. Lunter, A. A. Mak, A. K. Przhevuskii, D. S. Prilezhaev, M. N. Tolstoi, and V. A. Fromzel’, Kvantovaya Elektron., 3, 2187–2196 (1976).ADSGoogle Scholar
  22. 22.
    M. V. Bogdanovich, ″Steric, Polarization, and Energetic Characteristic of Diode-Pumped Solid-State Lasers for the Spectral Range 1.53–1.58 μm, Candidate Dissertation, Inst. Phys., NAS Belarus, Minsk (2014).Google Scholar
  23. 23.
    A. A. Kaminskii, Crystalline Lasers: Physical Processes and Operating Schemes, CRC, New York (1996).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. V. Bogdanovich
    • 1
  • A. A. Izyneev
    • 2
  • K. I. Lantsov
    • 1
  • K. V. Lepchenkov
    • 1
  • A. G. Ryabtsev
    • 1
  • V. N. Pavlovskii
    • 1
  • P. I. Sadovskii
    • 2
  • I. E. Svitenkov
    • 1
  • M. A. Shchemelev
    • 1
  1. 1.B. I. Stepanov Institute of Physics of the National Academy of Sciences of BelarusMinskBelarus
  2. 2.V. A. Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences (Fryazino Branch)Moscow OblastRussia

Personalised recommendations