Skip to main content
Log in

Procedure for Matrix Effect Reduction in Metal Analysis Using Laser-Induced Breakdown Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

A procedure for matrix effect reduction is proposed to enhance the precision of quantitative analysis of metal alloys using laser-induced breakdown spectroscopy (LIBS). This procedure is based on a number of successive steps in order to correct the signal fluctuations caused by plasma interaction and the matrix effect. The first step is the selection of optimum parameter settings of the detection system, such as laser power, delay time, and focal distance. The second step is the estimation of the absolute or relative values of impurities on the basis of the internal standard calibration. The third step is the analysis of the metal basis of the alloy used as an internal standard, which requires spectrum averaging, whole integral spectrum normalization, and self-absorption correction. Three sets of metal-based alloys (aluminum, steel, and copper) are used in this investigation as reference standards for calibration and validation. Successive improvements of the quality of calibration curves are observed during the proposed procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, Copyright, John Wiley & Sons Ltd. (2006).

    Book  Google Scholar 

  2. D. Hahn and Nicollo’ Omenetto, J. Appl. Spectrosc., 64, 335–366A (2010).

    Article  ADS  Google Scholar 

  3. D. A. Cremers and R. C. Chinni, Appl. Spectrosc. Rev., 44, 457–506 (2009).

    Article  ADS  Google Scholar 

  4. A. P. M. Michel, Spectrochim. Acta, B, 65, 185–191 (2010).

    Article  ADS  Google Scholar 

  5. F. Anabitarte, A. Cobo, and J. M. Lopez-Higuera, Laser-Induced Breakdown Spectroscopy: Fundamentals, Applications, and Challenges, Int. Scholarly Res. Network, ISRN Spectroscopy (2012); ID 285240; doi: https://doi.org/10.5402/2012/285240.

  6. R. Gaudiuso, M. Dell’Aglio, O. Pascale, G. S. Senesi, and A. D. Giacomo, Sensors, 10, 7434–7468 (2010); doi: https://doi.org/10.3390/s100807434.

    Article  Google Scholar 

  7. K. X. Li, W. D. Zhou, Q. M. Shen, J. Shao, and H. G. Qian, Spectrochim. Acta, B, 65, 420–424 (2010).

    Google Scholar 

  8. A. Koujelev and S. L. Lui, Artifi cial Neural Networks for Material Identifi cation, Mineralogy and Analytical Geochemistry Based on Laser-Induced Breakdown Spectroscopy, Canadian Space Agency (2011), ISBN: 978-953-307-220-3, InTech.

  9. B. Salle, D. A. Cremers, S. Maurice, and R. C. Wiens, Spectrochim. Acta, B, 60, 479–490 (2005).

    Article  ADS  Google Scholar 

  10. I. Osticioli, N.F.C. Mendes, S. Porcinai, A. Cagnini, and E. Castellucci, Bioanal. Chem., 394, 1033–1041 (2009); doi: https://doi.org/10.1007/s00216-009-2653-8.

    Article  Google Scholar 

  11. A. Jurado-López and M. D. Luque de Castro, Talanta, 59, No. 2, 409–415 (2003); doi: https://doi.org/10.1016/S0039-9140(02)00527-1.

    Article  Google Scholar 

  12. S. Y. Oh, F. Y. Yueh, J. P. Singh, C. C. Herman, and K. Zeigler, Spectrochim. Acta, B, 64, 113–118 (2009).

    Article  ADS  Google Scholar 

  13. T. Ctvrtnickova, L. Cabalin, J. Laserna, V. Kanicky, and G. Nicolas, Appl. Surf. Sci., 255, 5329–5333 (2009).

    Article  ADS  Google Scholar 

  14. S. Pandhija and A. K. Rai, J. Phys., 70, 553–563 (2008).

    Google Scholar 

  15. V. Lazic, F. Colao, R. Fantoni, V. Spizzichino, and S. Jovicevic, Spectrochim. Acta, B, 62, 30–39 (2007).

    Article  ADS  Google Scholar 

  16. J. Hermann, L. Mercadier, E. Mothe, G. Socol, and P. Alloncle, Spectrochim. Acta, B, 65, 636–641 (2010).

    Google Scholar 

  17. B. C. Windom and D.W. Hahn, J. Anal. At. Spectrom., 24, 1665–1675 (2009).

    Article  Google Scholar 

  18. C. Aragon and J. A. Aguilera, Spectrochim. Acta, B, 63, 893–916 (2008).

    Article  ADS  Google Scholar 

  19. D. Hahn and Nicollo’ Omenetto, Appl. Spectrosc., 66, 337–419 (2012).

    Article  ADS  Google Scholar 

  20. J. A. Aguilera, C. Arago’n, V. Madurga, and J. Manrique, Spectrochim. Acta, B, 64, 993 (2009).

    Article  ADS  Google Scholar 

  21. N. B. Zorov, A. A. Gorbatenko, T. A. Labutinand, and A. M. Popov, Spectrochim. Acta, B, 65, 642–657 (2010).

    Google Scholar 

  22. J. Feng, Z. Wang, Z. Li, and W. Ni, Spectrochim. Acta, B, 65, 549–556 (2010).

    Google Scholar 

  23. A. Hrdlicka, L. Zaorálková, M. Galiová, T. Ctvrtnícková, V. Kanický, V. Otruba, K. Novotný, P. Krásenský, J. Kaiser, R. Malina, and K. Páleníková, Spectrochim. Acta, B, 64, 74–78 (2009).

    Google Scholar 

  24. Z. Wang, J. Feng, L. Li, and W. Ni, Z. Li, J. Anal. At. Spectrom. , 26 (11), 2175–2182 (2011).

    Article  Google Scholar 

  25. A. Kadachiand and M. El-Eshaikh, Spectrosc. Lett., 48, 403–410 (2015).

    Article  ADS  Google Scholar 

  26. L. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzicchino, Spectrochim. Acta, B, 60, 1186–1201 (2005).

    Google Scholar 

  27. Spectrochim. Acta, B, 74-75, 38–45 (2012).

  28. N. B. Zorov, A. A. Gorbatenko, T. A. Labutin, and A. M. Popov, Spectrochim. Acta, B, 65, 642–657 (2010).

    Article  ADS  Google Scholar 

  29. David Harvey, Standardizing Analytical Methods; http://www.saylor.org/site/wp-content/uploads/2012/07/Chapter511.pdf.

  30. Ashraf Mohmoud El Sherbini and Abdulaziz Saad Al Aamer, J. Signal Inform. Process, 3, 502–515 (2012).

    Article  Google Scholar 

  31. J. W. Robinson, E. S. Frame, and G. M. Frame, II, Undergraduate Instrumental Analysis, Textbook-1264, 7th ed., CRC Press (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Al-Eshaikh.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 4, p. 673, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Eshaikh, M.A. Procedure for Matrix Effect Reduction in Metal Analysis Using Laser-Induced Breakdown Spectroscopy. J Appl Spectrosc 84, 725–730 (2017). https://doi.org/10.1007/s10812-017-0536-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0536-x

Keywords

Navigation