Skip to main content
Log in

Estimating the Acquisition Price of Enshi Yulu Young Tea Shoots Using Near-Infrared Spectroscopy by the Back Propagation Artificial Neural Network Model in Conjunction with Backward Interval Partial Least Squares Algorithm

  • Published:
Journal of Applied Spectroscopy Aims and scope

Near infrared spectroscopy and the back propagation artificial neural network model in conjunction with backward interval partial least squares algorithm were used to estimate the purchasing price of Enshi yulu young tea shoots. The near-infrared spectra regions most relevant to the tea shoots price model (5700.5–5935.8, 7613.6–7848.9, 8091.8–8327.1, 8331–8566.2, 9287.5–9522.5, and 9526.6–9761.9 cm–1) were selected using backward interval partial least squares algorithm. The first five principal components that explained 99.96% of the variability in those selected spectral data were then used to calibrate the back propagation artificial neural tea shoots purchasing price model. The performance of this model (coefficient of determination for prediction 0.9724; root-mean-square error of prediction 4.727) was superior to those of the back propagation artificial neural model (coefficient of determination for prediction 0.8653, root-mean-square error of prediction 5.125) and the backward interval partial least squares model (coefficient of determination for prediction 0.5932, root-mean-square error of prediction 25.125). The acquisition price model with the combined backward interval partial least squares–back propagation artificial neural network algorithms can evaluate the price of Enshi yulu tea shoots accurately, quickly and objectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Bahorun, A. Luximon-Ramma, T. Gunness, D. Sookar, S. Bhoyroo, R. Jugessur, D. Reebye, K. Googoolye, A. Crozier, and O. Aruoma, Toxicology, 278, 68–74 (2010).

    Article  Google Scholar 

  2. X. F. Zhou, Z. L. Yang, S. A. Haughey, P. Galvin-King, L. J. Han, and C. T. Elliott, Food Chem., 189, 13–18 (2015).

    Article  Google Scholar 

  3. X. M. Liu, J. S. Liu, Spectrosc. Lett., 47, 729–739 (2014).

    Article  Google Scholar 

  4. C. F. Wu, Z. G. Wu, R. A. Hashmonay, S. Y. Chang, Y. S. Wu, C. P. Chao, M. J. Chase, and R. H. Kagann, Atm. Environ., 82, 335–342 (2014).

    Article  Google Scholar 

  5. M. A. Tavanaie, N. Esmaeilian, and M. R. M. Mojtahedi, Dyes Pigments, 114, 267–272 (2015).

    Article  Google Scholar 

  6. M. Blanco and A. Peguero, TrAC Trend. Anal. Chem., 29, 1127–1136 (2010).

    Article  Google Scholar 

  7. M. J. Lee, D. Y. Seo, H. E. Lee, W. S. Kim, M. Y. Jeong, and G. J. Choi, Int. J. Pharm., 403, 66–72 (2011).

    Article  Google Scholar 

  8. M. S. Lee, Y. S. Hwang, J. W. Lee, and M. G. Choung, Food Chem., 158, 351–357 (2014).

    Article  Google Scholar 

  9. Y. Huang, G. R. Du, Y. J. Ma, and J. Zhou, Optik, 126, 2030–2034 (2015).

    Article  ADS  Google Scholar 

  10. W. He, J. Zhou, H. Cheng, L. Y. Wang, K. Wei, W. F. Wang, and X. H. Li, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 86, 399–404 (2012).

    Article  ADS  Google Scholar 

  11. J. Y. Shi, X. B. Zou, J. W. Zhao, and H. P. Mao, J. Infrared Millim. Waves, 30, 458–452 (2011).

    Article  Google Scholar 

  12. Q. S. Chen, D. L. Zhang, W. X. Pan, H. H. Li, K. Urmila, and J. W. Zhao, Trend. Food Sci. Technol., 43, 63–82 (2015).

    Article  Google Scholar 

  13. D. Ren, F. F. Qu, K. Lv, Z. Zhang, H. L. Xu, and X. Y. Wang, Neurocomputing, 162, 101–111 (2015).

    Google Scholar 

  14. Z. Z. Zhang, S. P. Wang, X. C. Wan, and S. H. Yan, Spectrosc. Eur., 23, 17–21 (2011).

    Google Scholar 

  15. J. Y. Shi, X. B. Zou, H. Mel, K. L. Wang, X. Wang, and H. Chen, Spectrochim. Acta, A: Mol. Biomol. Spectrosc., 94, 271–276 (2012).

    Article  ADS  Google Scholar 

  16. D. Wu, Y. P. He, C. Nie, F. Cao, and Y. D. Bao, Anal. Chim. Acta, 659, 229–237 (2010).

    Article  Google Scholar 

  17. A. E. Ghaziri and E. M. Qannari, Chemometr. Intel. Lab. Syst., 148, 95–105 (2015).

    Article  Google Scholar 

  18. Y. L. Yan, B. Chen, and D. Z. Zhu, Near Infrared Spectroscopy Principles, Technologies and Applications, China Light Industry Press, Beijing (2013), pp. 112–114.

    Google Scholar 

  19. Y. D. Liu, X. D. Sun, and A. G. Ouyang, LWT-Food Sci. Technol., 43, 602–607 (2010).

    Article  Google Scholar 

  20. J. Wu, W. Luo, X. K. Wang, Q. Cheng, C. G. Sun, and H. Li, J. Pharm. Biomed. Anal., 80, 186–191 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sh.-P. Wang or Z.-M. Gong.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 4, p. 670, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SP., Gong, ZM., Su, XZ. et al. Estimating the Acquisition Price of Enshi Yulu Young Tea Shoots Using Near-Infrared Spectroscopy by the Back Propagation Artificial Neural Network Model in Conjunction with Backward Interval Partial Least Squares Algorithm. J Appl Spectrosc 84, 704–709 (2017). https://doi.org/10.1007/s10812-017-0533-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0533-0

Keywords

Navigation