Skip to main content

Advertisement

Log in

Spectrophotometric Determination of Rifampicin in Bulk Drug and Pharmaceutical Formulations Based on Redox and Complexation Reactions

  • Published:
Journal of Applied Spectroscopy Aims and scope

Two spectrophotometric methods were developed and validated for the determination of rifampicin (RIF) in bulk form, formulations, and spiked human urine. The first method is based on the reduction of the Folin–Ciocalteu (FC) reagent by RIF to form a blue colored chromogen with λmax at 760 nm (the FCR method). In the second method, iron(III) is reduced by RIF in a neutral medium, and the resulting iron(II) is complexed with ferricyanide to form a Prussian blue peaking at 750 nm (the FFC method). Under optimum conditions, Beer's law enabled the determination of the drug in the concentration ranges 1–35 and 2.5–50 μg/mL with apparent molar absorptivities of 2.72 × 104 and 1.63×104 L/(mol × cm) for the FCR and FFC methods, respectively. The Sandell sensitivity, limits of detection (LOD), and quantification (LOQ) values were also reported for both methods. The precision of the methods, with % RSD of < 2%, was satisfactory, and the accuracy was higher than 2% (RE). The proposed methods were successfully applied to the determination of drug in capsules without interference from common additives and spiked human urine without interference from endogenous substances. A statistical analysis indicated that there was no significant difference between the results obtained by the developed methods and the official method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. British Pharmacopoeia Communication, British Pharmacopoeia, Her Majesty's Stationery Office, London (2000), pp. 1346–1347.

  2. European Pharmacopoeia Commission, European Pharmacopoeia, Council of Europe Strasbourg (1997), pp. 1446–1447.

  3. P. F. Barnes and S. A. Barrows, Ann. Int. Med., 119, 400–410 (1993).

    Article  Google Scholar 

  4. S. Oldfield, J. D. Berg, H. J. Stiles, and B. M. Buckley, J. Chromatogr., 377, 423–429 (1986).

    Article  Google Scholar 

  5. A. B. M. Jamaluddin, G. Sarwar, M. A. Rahim, and M. K. Rahman, J. Chromatogr., 525, 495–497 (1990).

    Article  Google Scholar 

  6. J. M. Finkel, R. F. Pittillo, and L. B. Mellett, Chemotherapy, 16, 380–388 (1971).

    Article  Google Scholar 

  7. M. Y. Khuhawar and F. M. A. Rind, J. Chromatogr. B, 766, 357–363 (2002).

    Article  Google Scholar 

  8. A. Walubo, P. Smith, and P. I. Folb, J. Chromatogr. B, 658, 391–396 (1994).

    Article  Google Scholar 

  9. A. A. Salem, H. A. Mossa, and B. N. Barsoum, Spectrochim. Acta A, 62, 466–472 (2005).

    Article  ADS  Google Scholar 

  10. E. Hammam, A. M. Beltagi, and M. M. Ghoneim, Microchem. J., 77, 53–62 (2004).

    Article  Google Scholar 

  11. S. Sadeghi and E. Karimi, Chem. Pharm. Bull., 54, 1107–1112 (2006).

    Article  Google Scholar 

  12. C. S. P. Sastry, T. E. Divakar, and U. V. Prasad, Indian Drugs, 22, 604–606 (1985).

    Google Scholar 

  13. Indian Pharmacopoeia, 4th ed., Vol. 1, Controller of Publications, New Delhi (1996).

  14. G. C. Hector and O. C. Alejandro, J. Pharm. Biomed. Anal., 20, 681–686 (1999).

    Article  Google Scholar 

  15. M. A. Espinosa, V. M. I. Acedo, D. P. A. Muñoz, F. Salinas, and C. F. Cañada, Anal. Chim. Acta., 427, 129–136 (2001).

    Article  Google Scholar 

  16. L. F. Marcellos, A. F. Faria, M. V. N. Souza, M. R. Almeida, G. P. Sabin, R. J. Poppi, and M. A. L. Oliveira, Cent. Eur. J. Chem., 10, 1808–1816 (2012).

    Google Scholar 

  17. N. B. Barsoum, M. S. Kamel, and M. M. A. Diab, Res. J. Agric. Biol. Sci., 4, 471–484 (2008).

    Google Scholar 

  18. R. B. Kakde, A. V. Kasture, and S. G. Wadodkar, Indian J. Pharm. Sci., 64, 24–27 (2002).

    Google Scholar 

  19. S. A. Benetton, E. R. M. Kedor-Hackmann, M. I. R. M. Santoro, and V. M. Borges, Talanta, 47, 639–643 (1998).

    Article  Google Scholar 

  20. A. R. Rote and A. K. Sharma, Indian J. Pharm. Sci., 59, 119–123 (1997).

    Google Scholar 

  21. M. Y. Rasha and M. M. Hadir, Spectrochim. Acta, A, 70, 1152–1166 (2008).

    Article  Google Scholar 

  22. S. Gunasekaran and E. Sailatha, Asian J. Chem., 21, 3561–3566 (2009).

    Google Scholar 

  23. E. Calleri, E. De Lorenzi, S. Furlanetto, G. Massolini, and G. Caccialanza, J. Pharm. Biomed. Anal., 29, 1089–1096 (2002).

    Article  Google Scholar 

  24. D. H. Shewiyoa, E. Kaaleb, P. G. Rishab, B. Dejaegherc, V. J. Smeyers, and H. Y. Vander, J. Chromatogr. A, 1260, 232–238 (2012).

    Article  Google Scholar 

  25. J. Ali, N. Ali, Y. Sultana, S. Baboota, and S. Faiyaz, Acta Chromatogr., 18, 168–179 (2007).

    Google Scholar 

  26. T. Wahdan, Chem. Anal. (Warsaw), 50, 457–464 (2005).

    Google Scholar 

  27. M. A. L. Alonso, O.R. Dominguez, and M. J. M. Arcos, Anal. Chim. Acta, 449,167–177 (2001).

    Article  Google Scholar 

  28. A. Z. Karim and S. A. Payam, Electrochim. Acta, 55, 6570–6576 (2010).

    Article  Google Scholar 

  29. L. Baoxin, H. Yuezhen, L. Jiagen, and Z. Zhujun, Anal. Bioanal. Chem., 383, 817–824 (2005).

    Article  Google Scholar 

  30. S. A. Halvatzis, P. M. M. Timotheou, and T. P. Hadjiioannou, Anal. Chim. Acta, 272, 251–263 (1993).

    Article  Google Scholar 

  31. M. A. A. Alonso, J. M. Kauffmann, and M. J. M. Arcos, Biosens. Bioelectron., 18, 1165–1171 (2003).

    Article  Google Scholar 

  32. H. Younghee and S. Sunmi, Arch. Pharm. Res., 24, 100–104 (2001).

    Article  Google Scholar 

  33. M. A. A. Lomillo, O. D. Renedo, and M. J. A. Martinez, Helv. Chim. Acta, 85, 2430–2439 (2002).

    Article  Google Scholar 

  34. A. A. Salem, H. A. Mossab, and B. N. Barsoum, Spectrochim. Acta A, 62, 466–472 (2005).

    Article  ADS  Google Scholar 

  35. M. Yong, Z. Bo-Tao, Z. Li-Xia, G. Guang-Sheng, and L. Jin-Ming, Chin. J. Chem., 26, 905–910 (2008).

    Article  Google Scholar 

  36. M. G. Shereen, M. B. Salah, and M. E. Abdel-Hamid, Anal. Lett., 25, 725–743 (1992).

    Article  Google Scholar 

  37. C. S. P. Sastry, T. E. Divakar, and U. V. Prasad, Indian J. Pharm. Sci., 47, 45–46 (1985).

    Google Scholar 

  38. I. C. Shukla, P. K. Dwivedi, S. Kumar, B. K. Singh, and A. Dubey, J. Indian Chem. Soc., 84, 100–102 (2007).

    Google Scholar 

  39. C. S. P. Sastry, T. E. Divakar, and U. V. Prasad, J. Inst. Chem. (India), 58, 17–18 (1986).

    Google Scholar 

  40. G. R. Rao, S. S. N. Murty, and E. V. Rao, Indian Drugs, 22, 484–488 (1985).

    Google Scholar 

  41. T. E. Divakar, U. V. Prasad, and C. S. P. Sastry, Indian Drugs, 22, 328–329 (1985).

    Google Scholar 

  42. B. S. Reddy and C. S. P. Sastry, J. Inst. Chem. (India), 55, 69–70 (1983).

    Google Scholar 

  43. T. P. Gandhi, A. A. Patel, P. R. Patel, and V. C. Patel, Indian Drugs, 16, 10–12 (1978).

    Google Scholar 

  44. T. E. Divakar, S. Sunitha, G. K. Deepthi, T. Benzamin, and N. P. Babu, Int. J. Chem. Environ. Pharm. Res., 3, 64–67 (2012).

    Google Scholar 

  45. M. Pesez and J. Bartos, Colorimetric and Fluorimetric Analysis of Organic Compounds and Drugs, Inc. New York (1974) 83.

  46. P. J. Ramesh, K. Basavaiah, and N. Rajendraprasad, Acta. Pharm., 60, 445–454 (2010).

    Article  Google Scholar 

  47. N. Swamy, K. N. Prashanth, and K. Basavaiah, ISRN Anal. Chem., 2014, 1–11 (2014).

    Article  Google Scholar 

  48. K. Basavaiah and H. C. Prameela, East. Pharm., 1, 61–63 (2002).

    Google Scholar 

  49. K. Basavaiah and H. C. Prameela, Farmaco, 57, 443–449 (2002).

    Article  Google Scholar 

  50. K. Senthilkumar, B. Manasa, E. Nagamani, G.V. Manoj, E. Mahesh, B. Sudhakar, and T. V. Narayana, Int. J. Res. Pharm. Chem., 2, 809–815 (2012).

    Google Scholar 

  51. N. P. Sadler and H. Jacobs, Talanta, 42, 1385–1388 (1995).

    Article  Google Scholar 

  52. A. V. Prasad, P. A. Devi, C. S. P. Sastry, and U. V. Prasad, East. Pharm., 2, 67–68 (2003).

    Google Scholar 

  53. T. K. Murthy, G. D. Sankar, and Y. S. Rao, Indian Drugs, 39, 230–233 (2002).

    Google Scholar 

  54. C. S. P. Sastry and J. S. V. M. Lingeswara-Rao, Anal. Lett., 29, 1763–1768 (1996).

    Article  Google Scholar 

  55. C. S. P. Sastry, P. Y. Naidu, and S. S. N. Murthy, Talanta, 44, 1211–1217 (1997).

    Article  Google Scholar 

  56. C. S. P. Sastry, A. Sailaja, T. T. Rao, and D. M. Krishna, Talanta, 39, 709–713 (1992).

    Article  Google Scholar 

  57. S. Raghuveer, A. B. Avadhanulu, and A. R. Pantulu, East. Pharm., 35, 129–130 (1992).

    Google Scholar 

  58. O. Folin and D. Ciocalteu, J. Biol. Chem., 73, 627–650 (1927).

    Google Scholar 

  59. G. L. Peterson, Anal. Biochem., 100, 201–220 (1979).

    Article  Google Scholar 

  60. R. I. Buckley and R. J. H. Clark, Coord. Chem. Rev., A, 65, 167–218 (1985).

    Article  Google Scholar 

  61. C. Samchez, L. Livage, J. Launay, M. Fourneir, and Y. Jeannin, J. Am. Chem. Soc., 104, 3194 (1982).

    Article  Google Scholar 

  62. D. L. Massart, B. G. M. Vandeginste, S. N. Deming, Y. Michotte, and L. Kauffmann, Chemometrics; A Textbook, Anterdam, Elsevier, (1988), pp. 80, 293.

  63. L. Guo, Y. Zhang, and Q. Li, Anal. Sci., 25, 1451 (2009).

    Article  Google Scholar 

  64. O. Zenita Devi, K. Basavaiah, Chemtech, 2, 624–632 (2010).

    Google Scholar 

  65. K. B. Vinay, H. D. Revanasiddappa, O. Zenita Devi, and K. Basavaiah, Chem. Ind. Chem. Eng. Quar., 16, 1–9 (2010).

    Article  Google Scholar 

  66. P. J. Ramesh, K. Basavaiah, N. Rajendraprasad, O. Zenita Devi, and K. B. Vinay, J. Appl. Spectrosc., 78, 383–391 (2012).

    Article  ADS  Google Scholar 

  67. V. R. Murthy, M. L. N. Acharyulu, B. V. Srinivas, T. S. Reddy, and G. V. S. R. Srama, Eur. J. Appl. Eng. Sci. Res., 2, 9–13 (2013).

    Google Scholar 

  68. International Conference on Hormonisation of Technical Requirements for Registration of Pharma ceu ticals for Human Use, ICH Harmonised Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology Q2 (R 1), Complementary Guideline on Methodology dated 06 November 1996, incorporated in november 2005, London.

  69. Europen Pharmacopoeia Monographs, 8.0, pp. 3165–3166.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Basavaiah.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 4, p. 669, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swamy, N., Basavaiah, K. Spectrophotometric Determination of Rifampicin in Bulk Drug and Pharmaceutical Formulations Based on Redox and Complexation Reactions. J Appl Spectrosc 84, 694–703 (2017). https://doi.org/10.1007/s10812-017-0532-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0532-1

Keywords

Navigation