Skip to main content

Advertisement

Log in

Radiative Decay of a Trion in a Quantum Well of a Semiconductor Heterostructure

  • Published:
Journal of Applied Spectroscopy Aims and scope

A quasi-classical model for the decay of a negative trion (exciton + electron) in a single crystalline quantum well (QW) into a c-band electron and the exciton followed by recombination of the electron and hole constituting the exciton was developed. It was shown that the trion binding energy increased if the QW quantum-sized energy levels were populated by electrons from a semiconductor matrix selectively doped with donors. Calculations established that the trion emission line width was slightly larger than that for a single exciton. The results as a whole agreed with known experimental data on the low-temperature radiative decay of trions in a QW. It was pointed out that the population of the trion quantum-sized energy levels could be changed by the application an external longitudinal (along the QW) electric field. A scheme for a stationary light-emitting device based on radiative transitions of trions (not leading to their decay) between quantum-sized energy levels was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. W. Massey, Negative Ions, Cambridge University Press, West Nyack, New York (1976).

    MATH  Google Scholar 

  2. B. M. Smirnov, Physics of Atoms and Ions [in Russian], Energoatomizdat, Moscow (1986).

    Google Scholar 

  3. A. I. Ansel’m, Zh. Eksp. Teor. Fiz., 24, No. 1, 83–89 (1953).

    Google Scholar 

  4. M. A. Lampert, Phys. Rev. Lett., 1, No. 12, 450–453 (1958).

    Article  ADS  Google Scholar 

  5. R. A. Sergeev and R. A. Suris, Fiz. Tverd. Tela, 43, No. 4, 714–718 (2001).

    Google Scholar 

  6. B. Stebe and C. Comte, Phys. Rev. B: Solid State, 15, No. 8, 3967–3979 (1977).

    Article  ADS  Google Scholar 

  7. R. Schilling and D. C. Mattis, Phys. Rev. Lett., 49, No. 11, 808–811 (1982).

    Article  ADS  Google Scholar 

  8. B. Stebe and A. Ainane, Superlattices Microstruct., 5, No. 4, 545–548 (1989).

    Article  ADS  Google Scholar 

  9. K. Kheng, R. T. Cox, Y. Merle d’Aubigne, F. Bassani, K. Saminadayar, and S. Tatarenko, Phys. Rev. Lett., 71, No. 11, 1752–1755 (1993).

    Article  ADS  Google Scholar 

  10. G. V. Astakhov, D. R. Yakovlev, V. P. Kochereshko, W. Ossau, J. Nurnberger, W. Faschinger, and G. Landwehr, Phys. Rev. B: Condens. Matter Mater. Phys., 60, No. 12, 8485–8488 (1999).

    Article  ADS  Google Scholar 

  11. N. A. Poklonskii, A. I. Syaglo, and S. A. Vyrko, Zh. Prikl. Spektrosk., 68, No. 3, 287–290 (2001) [N. A. Poklonskii, A. I. Syaglo, and S. A. Vyrko, J. Appl. Spectrosc., 68, No. 3, 371–376 (2001)].

  12. D. M. Whittaker and A. J. Shields, Phys. Rev. B: Condens. Matter Mater. Phys., 56, No. 23, 15185–15194 (1997).

    Article  ADS  Google Scholar 

  13. D. B. Turchinovich, V. P. Kochereshko, D. R. Yakovlev, V. Ossau, G. Landver, T. Voitovich, G. Karchevskii, and Ya. Kossut, Fiz. Tverd. Tela, 40, No. 5, 813–815 (1998).

    Google Scholar 

  14. N. V. Starostin, Zh. Prikl. Spektrosk., 50, No. 4, 535–551 (1989) [N. V. Starostin. J. Appl. Spectrosc., 50, No. 4, 333–347 (1989)].

  15. N. A. Poklonskii and A. I. Syaglo, Fiz. Tverd. Tela, 43, No. 1, 152–158 (2001).

    Google Scholar 

  16. A. Ya. Shik, Fiz. Tekh. Poluprovodn., 29, No. 8, 1345–1381 (1995).

    Google Scholar 

  17. J. Siviniant, D. Scalbert, A. V. Kavokin, D. Coquillat, and J.-P. Lascaray, Phys. Rev. B: Condens. Matter Mater. Phys., 59, No. 3, 1602–1604 (1999).

    Article  ADS  Google Scholar 

  18. N. A. Poklonskii, S. A. Vyrko, and S. L. Podenok, Statistical Physics of Semiconductors [in Russian], KomKniga, Moscow (2005).

    Google Scholar 

  19. V. P. Kochereshko, R. A. Suris, and D. R. Yakovlev, Usp. Fiz. Nauk, 170, No. 3, 335–338 (2000).

    Article  Google Scholar 

  20. C. Riva, F. M. Peeters, and K. Varga, Phys. Rev. B: Condens. Matter Mater. Phys., 61, No. 20, 13873–13881 (2000).

    Article  ADS  Google Scholar 

  21. J. Robertson. Philos. Mag. B, 66, No. 2, 199–209 (1992).

    Article  ADS  Google Scholar 

  22. N. A. Poklonskii and S. A. Vyrko, Zh. Prikl. Spektrosk., 69, No. 3, 375–382 (2002) [N. A. Poklonskii and S. A. Vyrko, J. Appl. Spectrosc., 69, No. 3, 434–443 (2002)].

  23. N. A. Poklonskii, S. A. Vyrko, O. N. Poklonskaya, and A. G. Zabrodskii, Fiz. Tekh. Poluprovodn., 50, No. 6, 738–750 (2016).

    Google Scholar 

  24. W. Ossau, D. R. Yakovlev, C. Y. Hu, V. P. Kochereshko, G. V. Astakhov, R. A. Suris, P. C. M. Christianen, and J. C. Maan, Fiz. Tekh. Poluprovodn., 41, No. 5, 831–836 (1999).

    Google Scholar 

  25. V. V. Solovyev and I. V. Kukushkin, Phys. Rev. B: Condens. Matter Mater. Phys., 79, No. 23, 233306 (2009).

    Article  ADS  Google Scholar 

  26. E. F. Gross, S. A. Permogorov, and B. S. Razbirin, Usp. Fiz. Nauk, 103, No. 3, 431–446 (1971).

    Article  Google Scholar 

  27. N. B. Brandt and V. A. Kul’bachinskii, Quasiparticles in Solid-State Physics [in Russian], Fizmatlit, Moscow (2005).

    Google Scholar 

  28. Yu. G. Kusraev and R. P. Seisyan, in: PeterburgLeningrad School of Electronics [in Russian], SPbGETU LETI, St. Petersburg (2013), pp. 234–257.

    Google Scholar 

  29. K.-S. Lee and E.-H. Lee, J. Appl. Phys., 76, No. 10, 5778–5781 (1994).

    Article  ADS  Google Scholar 

  30. R. P. Seisyan, Fiz. Tverd. Tela, 58, No. 5, 833–880 (2016).

    Google Scholar 

  31. G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, Phys. Rev. B: Condens. Matter Mater. Phys., 26, No. 4, 1974–1979 (1982).

    Article  ADS  Google Scholar 

  32. T. Miyajima, F. P. Logue, J. F. Donegan, J. Hegarty, H. Okuyama, A. Ishibashi, and Y. Mori, Appl. Phys. Lett., 66, No. 2, 180–182 (1995).

    Article  ADS  Google Scholar 

  33. O. Madelung, Semiconductors: Data Handbook, Springer, Berlin (2004).

    Book  Google Scholar 

  34. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors, Wiley, Chippenham (2009).

    Book  Google Scholar 

  35. E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures, Alpha Science International, Ltd., Harrow (2005).

    Google Scholar 

  36. K. Hess, Physica B+C, 117–118, Pt. 2, 723–728 (1983).

  37. I. B. Levinson, Fiz. Tekh. Poluprovodn., 7, No. 9, 1673–1683 (1973).

    Google Scholar 

  38. K. Hess, Appl. Phys. Lett., 35, No. 7, 484–486 (1979).

    Article  ADS  Google Scholar 

  39. I. B. Levinson, Usp. Fiz. Nauk, 139, No. 2, 347–355 (1983).

    Article  ADS  Google Scholar 

  40. M. R. Querry, Contractor Report CRDEC-CR-88009 (1987).

  41. F. Dujardin, A. El Hassani, E. Feddi, and B. Stebe, Solid State Commun., 103, No. 9, 515–518 (1997).

    Article  ADS  Google Scholar 

  42. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science, 264, No. 5158, 553–556 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Poklonski.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 4, pp. 586–594, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poklonski, N.A., Dzeraviaha, A.N., Vyrko, S.A. et al. Radiative Decay of a Trion in a Quantum Well of a Semiconductor Heterostructure. J Appl Spectrosc 84, 611–619 (2017). https://doi.org/10.1007/s10812-017-0518-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0518-z

Keywords

Navigation