Skip to main content
Log in

Simulation of Phonon Spectra in Three-Component Two-Dimensional Crystals of Refractory-Metal Dichalcogenides

  • Published:
Journal of Applied Spectroscopy Aims and scope

A model for ab initio calculation of the phonon properties of three-component solid solutions of refractory-metal dichalcogenides was developed based on the assumption that displacements of the same type of chalcogen atoms and decoupled displacements of the metal atoms were identical. The calculated phonon frequencies at the Γ-point for monomolecular layers of MoS2–xSex and MoS2–xTex agreed with existing experimental Raman spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, ACSNano: Rev., 9, No. 12, 11509–11539 (2015).

    Google Scholar 

  2. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol., 7, No. 11, 699–712 (2012).

    Article  ADS  Google Scholar 

  3. C. Ataca, M. Topsakal, E. Akturk, and S. Ciraci, J. Phys. Chem. C, 115, No. 33, 16354–16361 (2011).

    Article  Google Scholar 

  4. A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation, Academic Press, New York, London (1963) [Russian translation, Mir, Moscow (1965)].

  5. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys., 64, 1045–1097 (1992).

    Article  ADS  Google Scholar 

  6. W. H. Weber and R. Merlin (Eds.), Raman Scattering in Materials Science, Springer Science & Business Media (2013), p. 42.

  7. Y. S. Chen, W. Shockley, and G. L. Pearson, Phys. Rev., 151, No. 2, 648 (1966).

    Article  ADS  Google Scholar 

  8. R. M. Pick, M. H. Cohen, and R. M. Martin, Phys. Rev. B: Solid State, 1, No. 2, 910–920 (1970).

    Article  ADS  Google Scholar 

  9. X. Gonze and C. Lee, Phys. Rev. B: Condens. Matter Mater. Phys., 55, No. 16, 10355–10368 (1997).

    Article  ADS  Google Scholar 

  10. D. M. Ceperly and B. J. Alder, Phys. Rev. Lett., 45, No. 7, 566–569 (1980).

    Article  ADS  Google Scholar 

  11. A. Yu. Alekseev, A. V. Krivosheeva, V. L. Shaposhnikov, and V. E. Borisenko, Zh. Prikl. Spektrosk., 83, No. 6, 989–992 (2016) [A. Yu. Alexeev, A. V. Krivosheeva, V. L. Shaposhnikov, and V. E. Borisenko, J. Appl. Spectrosc., 83, 1035–1038 (2016)].

  12. S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and J. Wu, Nano Lett., 12, No. 11, 5576–5580 (2012).

    Article  ADS  Google Scholar 

  13. M. Yamamoto, S. T. Wang, M. Ni, Y.-F. Lin, S.-L. Li, S. Aikawa, W.-B. Jian, K. Ueno, K. Wakabayashi, and K. Tsukagoshi, ACSNano, 8, No. 4, 3895–3903 (2014).

    Google Scholar 

  14. A. Molina-Sanchez and L. Wirtz, Phys. Rev. B: Condens. Matter Mater. Phys., 84, No. 15, 155413 (1–8) (2011).

  15. X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jianga, and P.-H. Tan, Chem. Soc. Rev., 44, No. 9, 2757–2785 (2015).

    Article  Google Scholar 

  16. J. Mann, Q. Ma, P. M. Odenthal, M. Isarraraz, D. Le, E. Preciado, D. Barroso, K. Yamaguchi, G. von Son Palacio, A. Nguyen, T. Tran, M. Wurch, A. Nguyen, V. Klee, S. Bobek, D. Sun, T. F. Heinz, T. S. Rahman, R. Kawakami, and L. Bartels, Adv. Mater., 26, No. 9, 1399–1404 (2014).

    Article  Google Scholar 

  17. Q. Feng, N. Mao, J. Wu, H. Xu, C. Wang, J. Zhang, L. Xie, ACSNano, 9, No. 7, 7450–7455 (2015).

    Google Scholar 

  18. J. Jadczak, D. O. Dumcenco, Y. S. Huang, Y. C. Lin, K. Suenaga, P. H. Wu, H. P. Hsu, and K. K. Tiong, J. Appl. Phys., 116, No. 19, 193505 (1–7) (2014).

  19. Chanchal and A. K. Garg, J. Raman Spectrosc., 39, No. 1, 115–118 (2008).

    Article  ADS  Google Scholar 

  20. T. G. Wieting, A. Grisel, and F. Levy, Physica B+C (Amsterdam), 99, No. 1, 337–342 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Alexeev.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 4, pp. 554–560, July–August, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexeev, A.Y., Krivosheeva, A.V., Shaposhnikov, V.L. et al. Simulation of Phonon Spectra in Three-Component Two-Dimensional Crystals of Refractory-Metal Dichalcogenides. J Appl Spectrosc 84, 581–587 (2017). https://doi.org/10.1007/s10812-017-0514-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0514-3

Keywords

Navigation