Skip to main content
Log in

Successive Projections Algorithm–Multivariable Linear Regression Classifier for the Detection of Contaminants on Chicken Carcasses in Hyperspectral Images

  • Published:
Journal of Applied Spectroscopy Aims and scope

During slaughtering and further processing, chicken carcasses are inevitably contaminated by microbial pathogen contaminants. Due to food safety concerns, many countries implement a zero-tolerance policy that forbids the placement of visibly contaminated carcasses in ice–water chiller tanks during processing. Manual detection of contaminants is labor consuming and imprecise. Here, a successive projections algorithm (SPA)–multivariable linear regression (MLR) classifier based on an optimal performance threshold was developed for automatic detection of contaminants on chicken carcasses. Hyperspectral images were obtained using a hyperspectral imaging system. A regression model of the classifier was established by MLR based on twelve characteristic wavelengths (505, 537, 561, 562, 564, 575, 604, 627, 656, 665, 670, and 689 nm) selected by SPA , and the optimal threshold T = 1 was obtained from the receiver operating characteristic (ROC) analysis. The SPA–MLR classifier provided the best detection results when compared with the SPA–partial least squares (PLS) regression classifier and the SPA–least squares supported vector machine (LS–SVM) classifier. The true positive rate (TPR) of 100% and the false positive rate (FPR) of 0.392% indicate that the SPA–MLR classifier can utilize spatial and spectral information to effectively detect contaminants on chicken carcasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.consumerreports.org/cro/magazine/2014/02/the-high-cost-of-cheap-chicken/index.htm (2014).

  2. F. Lawrence, A. Wasley, and R. Ciorniciuc, The Guardian (2014); http://www.theguardian.com/world/2014/jul/23/-sprevealed-dirty-secret-uk-poultry-industry-chicken-campylobacter.

  3. USDA, Final rule.9CFR part 304. Fed. Regist., 61, 38805–38989 (1996).

  4. W. R. Windham, D. P. Smith, B. Park, K. C. Lawrence, and P. W. Feldner, Trans. ASAE, 46, 1733–1738 (2003).

    Article  Google Scholar 

  5. Y. R. Chen, W. R. Hruschka, and H. Early, J. Food Process Eng., 23, 89–99 (2000).

    Article  Google Scholar 

  6. Z. Xiong, D.W. Sun, A. Xie, Z. Han, and L. Wang, Food Chem., 175, 417–422 (2015).

    Article  Google Scholar 

  7. S. A. Hawkins, B. Bowker, H. Zhuang, G. Gamble, and R. Holser, J. Food Res., 3, 57–65 (2014).

    Article  Google Scholar 

  8. D. Alexandrakis, G. Downey, and A. G. M. Scannell, Food Bioprocess Tech., 5, 338–347 (2012).

    Article  Google Scholar 

  9. B. Park, K. C. Lawrence, W. R. Windham, and R. J. Buhr, Trans. ASAE, 45, 2017–2026 (2002).

    Article  Google Scholar 

  10. B. Park, K. C. Lawrence, W. R. Windham, and D. P. Smith, J. Food Eng., 75, 340–348 (2006).

    Article  Google Scholar 

  11. B. Park, S.-C. Yoon, W. R. Windham, K. C. Lawrence, M. S. Kim, and K. Chao, Sens. Instrum. Food Qual. Saf., 5, 25–32 (2011).

    Article  Google Scholar 

  12. W. R. Windham, D. P. Smith, M. E. Berrang, K. C. Lawrence, and P. W. Feldner, Int. J. Poult. Sci., 4, 657–662 (2005).

    Article  Google Scholar 

  13. W. Wu, G. Y. Chen, J. C. Xia, C.W. Ye, and K. J. Chen, Spectrosc. Spect. Anal., 34, 3363–3367 (2014).

    Google Scholar 

  14. S. C. Yoon, B. Park, K. C. Lawrence, W. R. Windham, and G. W. Heitschmidt, Comput. Electron. Agric., 79, 159–168 (2011).

    Article  Google Scholar 

  15. G. W. Heitschmidt, B. Park, K.C. Lawrence, W. R. Windham, and D. P. Smith, Trans. ASABE, 50, 1427–1432 (2007).

    Article  Google Scholar 

  16. S. Kang, K. Lee, J. Son, and M. S. Kim, Proc. Food Sci., 1, 953–959 (2011).

    Article  Google Scholar 

  17. K. C. Lawrence, W. R. Windham, B. Park, and R. J. Buhr, J. Near Infrared Spectrosc., 11, 269–281 (2003).

    Article  ADS  Google Scholar 

  18. C. D. Everard, M. S. Kim, and H. Lee, J. Food Eng., 143, 139–145 (2014).

    Article  Google Scholar 

  19. M. C. U. Araújo, T. C. B. Saldanha, R. K. H. Galvão, T. Yoneyama, H. C. Chame, and V. Visani, Chemometr. Intell. Lab. Syst., 57, 65–73 (2001).

    Article  Google Scholar 

  20. R. K. H. Galvão, M. C. U. Araújo, W. D. Fragoso, E. C. Silva, G. E. José, S. F. C. Soares, and H. M. Paiva, Chemometr. Intell. Lab. Syst., 92, 83–91 (2008).

    Article  Google Scholar 

  21. C. E. Metz, Semin. Nucl. Med., 8, 283–298 (1978).

    Article  Google Scholar 

  22. L. D. Stefano and A. Bulgarelli, Int. Conf. Image Anal. Process., 322–327 (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. J. Chen.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 3, p. 510, May–June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Chen, G.Y., Kang, R. et al. Successive Projections Algorithm–Multivariable Linear Regression Classifier for the Detection of Contaminants on Chicken Carcasses in Hyperspectral Images. J Appl Spectrosc 84, 535–541 (2017). https://doi.org/10.1007/s10812-017-0506-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0506-3

Keywords

Navigation