Spectral and kinetic features of rhodamine 6G fluorescence quenching in a heterogeneous system of macroporous silica (silokhrom, S-80) and water caused by the combined influence of an external heavy atom (KI) and resonance-excited surface plasmons on citrate hydrosol silver nanoparticles. Surface plasmon quenching occurred through donor–acceptor interaction in complexes with iodide and silver nanoparticles. The activation energy of dye fluorescence quenching in the heterogeneous system had a minimum that was associated with hindered diffusion during the formation of silver-nanoparticle clusters.
This is a preview of subscription content, access via your institution.
References
S. P. McGlynn, T. Azumi, and M. Kinoshita, Molecular Spectroscopy of the Triplet State, Prentice-Hall International Series in Chemistry, Prentice-Hall, Englewood Cliffs, N. J. (1969) [Russian translation], Mir, Moscow (1972).
K. N. Solov’ev and E. A. Borisevich, Usp. Fiz. Nauk, 175, No. 3, 247–270 (2005).
B. Minaev, Spectrochim. Acta, Part A, 60, 3213–3224 (2004).
L. Yu. Mironov, E. B. Sveshnikova, and V. L. Ermolaev, Opt. Spektrosk., 116, No. 6, 1009–1016 (2014).
V. V. Bryukhanov, B. F. Minaev, A. V. Tsibul’nikova, N. S. Tikhomirova, and V. A. Slezhkin, Opt. Zh., 81, No. 11, 7–14 (2014).
O. L. Gladkova, A. S. Starukhin, and N. N. Kruk, Opt. Spektrosk., 110, No. 2, 263–270 (2011).
B. R. Eggins, Chemical Sensors and Biosensors, John Wiley & Sons, Ltd., Chichester (2002) [Russian translation], Tekhnosfera, Moscow (2005).
S. V. Gaponenko, Introduction to Nanophotonics, Cambridge University Press, Cambridge, UK (2010).
A. I. Makarycheva, Yu. G. Slizhov, and G. L. Ryzhova, Izv. Vyssh. Uchebn. Zaved., Fiz., 57, No. 7/2, 81–83 (2014).
T. A. Kotel’nikova, N. A. Zubareva, and B. V. Kuznetsov, Sorbtsionnye Khromatogr. Protsessy, 15, No. 4, 493–501 (2015).
A. V. Tsibulnikova, V. V. Bryukhanov, and V. A. Slezhkin, Russ. Phys. J., 57, No. 12, 1716–1724 (2015).
A. O. Govorov, J. Lee, and N. A. Kotov, Phys. Rev., 76, 125308 (2007).
V. V. Klimov, Nanoplasmonics [in Russian], Fizmatlit, Moscow (2009).
V. V. Bryukhanov, I. G. Samusev, A. M. Ivanov, and N. A. Myslitskaya, J. Phys. Chem., 82, No. 2, 1–5 (2008).
A. B. Mosolov, Zh. Eksp. Teor. Fiz., 99, No. 1, 295–299 (1991).
L. M. Zelenyi and A. V. Milovanov, Usp. Fiz. Nauk, 174, No. 8, 809–852 (2004).
S. G. Entelis and R. P. Tiger, Reaction Kinetics in the Liquid Phase, Wiley, New York (1973) [Russian translation], Khimiya, Moscow (1973).
S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd edn., Academic Press, New York (1982) [Russian translation], Mir, Moscow (1984).
R. K. Iler, The Chemistry of Silica, John Wiley & Sons, New York (1979) [Russian translation], Mir, Moscow (1982).
L. I. Heifets and A. V. Neimark, Multiphase Processes in Porous Media [in Russian], Mir, Moscow (1982).
B. P. Nikol’skii, Handbook of Chemistry [in Russian], Khimiya, Leningrad (1971).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 3, pp. 351–357, May–June, 2017.
Rights and permissions
About this article
Cite this article
Tikhomirova, N.S., Samusev, I.G., Slezhkin, V.A. et al. Rhodamine 6G Fluorescence Quenching by an External Heavy Atom and Silver Nanoparticles at the Nanoporous-Silica–Water Boundary. J Appl Spectrosc 84, 376–381 (2017). https://doi.org/10.1007/s10812-017-0479-2
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10812-017-0479-2
Keywords
- silver nanoparticles
- rhodamine 6G
- silica
- silokhrom
- surface plasmon
- fluorescence
- external heavy atom
- citrate hydrosol
- quenching activation energy
- cluster