Skip to main content

Rhodamine 6G Fluorescence Quenching by an External Heavy Atom and Silver Nanoparticles at the Nanoporous-Silica–Water Boundary

Spectral and kinetic features of rhodamine 6G fluorescence quenching in a heterogeneous system of macroporous silica (silokhrom, S-80) and water caused by the combined influence of an external heavy atom (KI) and resonance-excited surface plasmons on citrate hydrosol silver nanoparticles. Surface plasmon quenching occurred through donor–acceptor interaction in complexes with iodide and silver nanoparticles. The activation energy of dye fluorescence quenching in the heterogeneous system had a minimum that was associated with hindered diffusion during the formation of silver-nanoparticle clusters.

This is a preview of subscription content, access via your institution.

References

  1. S. P. McGlynn, T. Azumi, and M. Kinoshita, Molecular Spectroscopy of the Triplet State, Prentice-Hall International Series in Chemistry, Prentice-Hall, Englewood Cliffs, N. J. (1969) [Russian translation], Mir, Moscow (1972).

  2. K. N. Solov’ev and E. A. Borisevich, Usp. Fiz. Nauk, 175, No. 3, 247–270 (2005).

    Article  Google Scholar 

  3. B. Minaev, Spectrochim. Acta, Part A, 60, 3213–3224 (2004).

    Article  ADS  Google Scholar 

  4. L. Yu. Mironov, E. B. Sveshnikova, and V. L. Ermolaev, Opt. Spektrosk., 116, No. 6, 1009–1016 (2014).

    Article  Google Scholar 

  5. V. V. Bryukhanov, B. F. Minaev, A. V. Tsibul’nikova, N. S. Tikhomirova, and V. A. Slezhkin, Opt. Zh., 81, No. 11, 7–14 (2014).

    Google Scholar 

  6. O. L. Gladkova, A. S. Starukhin, and N. N. Kruk, Opt. Spektrosk., 110, No. 2, 263–270 (2011).

    Article  Google Scholar 

  7. B. R. Eggins, Chemical Sensors and Biosensors, John Wiley & Sons, Ltd., Chichester (2002) [Russian translation], Tekhnosfera, Moscow (2005).

  8. S. V. Gaponenko, Introduction to Nanophotonics, Cambridge University Press, Cambridge, UK (2010).

    Book  Google Scholar 

  9. A. I. Makarycheva, Yu. G. Slizhov, and G. L. Ryzhova, Izv. Vyssh. Uchebn. Zaved., Fiz., 57, No. 7/2, 81–83 (2014).

    Google Scholar 

  10. T. A. Kotel’nikova, N. A. Zubareva, and B. V. Kuznetsov, Sorbtsionnye Khromatogr. Protsessy, 15, No. 4, 493–501 (2015).

    Google Scholar 

  11. A. V. Tsibulnikova, V. V. Bryukhanov, and V. A. Slezhkin, Russ. Phys. J., 57, No. 12, 1716–1724 (2015).

    Article  Google Scholar 

  12. A. O. Govorov, J. Lee, and N. A. Kotov, Phys. Rev., 76, 125308 (2007).

    Article  ADS  Google Scholar 

  13. V. V. Klimov, Nanoplasmonics [in Russian], Fizmatlit, Moscow (2009).

    Google Scholar 

  14. V. V. Bryukhanov, I. G. Samusev, A. M. Ivanov, and N. A. Myslitskaya, J. Phys. Chem., 82, No. 2, 1–5 (2008).

    Google Scholar 

  15. A. B. Mosolov, Zh. Eksp. Teor. Fiz., 99, No. 1, 295–299 (1991).

    Google Scholar 

  16. L. M. Zelenyi and A. V. Milovanov, Usp. Fiz. Nauk, 174, No. 8, 809–852 (2004).

    Article  Google Scholar 

  17. S. G. Entelis and R. P. Tiger, Reaction Kinetics in the Liquid Phase, Wiley, New York (1973) [Russian translation], Khimiya, Moscow (1973).

  18. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd edn., Academic Press, New York (1982) [Russian translation], Mir, Moscow (1984).

  19. R. K. Iler, The Chemistry of Silica, John Wiley & Sons, New York (1979) [Russian translation], Mir, Moscow (1982).

  20. L. I. Heifets and A. V. Neimark, Multiphase Processes in Porous Media [in Russian], Mir, Moscow (1982).

    Google Scholar 

  21. B. P. Nikol’skii, Handbook of Chemistry [in Russian], Khimiya, Leningrad (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Samusev.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 3, pp. 351–357, May–June, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tikhomirova, N.S., Samusev, I.G., Slezhkin, V.A. et al. Rhodamine 6G Fluorescence Quenching by an External Heavy Atom and Silver Nanoparticles at the Nanoporous-Silica–Water Boundary. J Appl Spectrosc 84, 376–381 (2017). https://doi.org/10.1007/s10812-017-0479-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0479-2

Keywords

  • silver nanoparticles
  • rhodamine 6G
  • silica
  • silokhrom
  • surface plasmon
  • fluorescence
  • external heavy atom
  • citrate hydrosol
  • quenching activation energy
  • cluster