Skip to main content
Log in

Classification of Aroma Styles and Geographic Origins of Chinese Liquors Using Chemometrics Based on Fluorescence Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

The purpose of this paper is to study the feasibility of fluorescence spectroscopy as a reliable method for discrimination of Chinese liquor according to different aroma styles and geographic origins. The 84 Chinese liquors were analyzed by fluorescence spectroscopy and chemometrics. The results showed that Chinese liquors exhibit characteristic fluorescence spectra recorded at special excitation wavelengths that may be considered as fingerprints. Both principal component analysis (PCA) and stepwise linear discriminant analysis (SLDA) were carried out on the emission spectra (330–435 nm) recorded at excitation wavelength 300 nm to classify different aroma styles of Chinese liquors. The first two principal components explained 98.87% of the total variance, and the SLDA classified correctly 100%. Both hierarchical cluster analysis (HCA) and principal component analysis (PCA) were carried out on the emission spectra (325–420 nm) recorded at excitation wavelength 300 nm to identify different geographic origins of Chinese liquors. HCA accurately identified all the samples and the first three PCA explained 98.25% of the total variance. This study indicates that fluorescence spectroscopy coupled with chemometrics offers a promising approach for identifying Chinese liquors according to different flavor types and geographic origins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Cheng, W. Fan, and Y. Xu, Food Control., 35, 153–159 (2014).

    Article  Google Scholar 

  2. J. J. Li, C. X. Song, C. J. Hou, D. Q. Huo, C. H. Shen, X. G. Luo, M. Yang, and H. B. Fa, J. Agric. Food Chem., 62, 10422–10427 (2014).

    Article  Google Scholar 

  3. M. Liu, X. M. Han, K. Tu, L. Q. Pan, J. Tu, L. Tang, P. Liu, G. Zhan, Q. D. Zhong, and Z. H. Xiong, Food Control, 26, 564–571 (2012).

    Article  Google Scholar 

  4. H. Liang, W. Li, Q. Luo, C. Liu, Z. Wu, and W. Zhang, J. Sci. Food Agric., 95, 2729–2733 (2015).

    Article  Google Scholar 

  5. Z. B. Xiao, D. Yu, Y. W. Niu, F. Chen, S. Q. Song, J. C. Zhu, and G. Y. Zhu, J. Chromatogr. B, 92, 945–951 (2014).

    Google Scholar 

  6. Y. H. Ma, M. P. Li, and S. W. Zhang, Asian J. Chem., 26, 4707–4715 (2014).

    Google Scholar 

  7. J. F. Wu and Y. Xu, Food Sci. Biotechnol., 22, 1253–1261 (2013).

    Google Scholar 

  8. P. Y. Cheng, W. L. Fan, and Y. Xu, Food Res. Int., 54, 1753–1760 (2013).

    Article  Google Scholar 

  9. W. L. Fan and M. C. Qian, J Agric Food Chem., 53, 7931–7938 (2005).

    Article  Google Scholar 

  10. R. Karoui, E. Dufour, J. O. Bosset, and J. De Baerdemaeker, Food Chem., 101, 314–320 (2007).

    Article  Google Scholar 

  11. E. Sikorska, Euro Food Res. Technol., 225, 43–48 (2007).

    Article  Google Scholar 

  12. H. Rouissi, S. Dridi, M. Kammoun, J. De Baerdemaeker, and R. Karoui, Euro Food Res. Technol., 226, 1021–1028 (2008).

    Article  Google Scholar 

  13. M. Hammami, H. Rouissi, N. Salah, H. Selmi, M. Al-Otaibi, C. Blecker, and R. Karoui, Food Chem., 122, 1344–1349 (2010).

    Article  Google Scholar 

  14. A. Sahar, S. Portanguen, A. Kondjoyan, and E. Dufour, Euro Food Res. Technol., 231, 803–810 (2010).

    Article  Google Scholar 

  15. J. Sadecka, J. Tothova, and P. Majek, Food Chem., 117, 491–498 (2009).

    Article  Google Scholar 

  16. E. Dufour, A. Letort, A. Laguet, A. Lebecque, and J. N. Serra, Anal. Chim. Acta, 563, 292–297 (2006).

    Article  Google Scholar 

  17. J. Sadecka and J. Tothova, Euro Food Res. Technol., 230, 797–802 (2010).

    Article  Google Scholar 

  18. J. L. Yang, T. Zhu, Y. Xu, W. L. Fan, G. Q. Chen, and H. Wu, Spectrosc. Spect. Anal., 29, 3339 (2009).

    Google Scholar 

  19. S. D. Rodriguez, M. E. Monge, A. C. Olivieri, R. M. Negri, and D. L. Bernik, Food Res. Int., 43, 797–803 (2010).

    Article  Google Scholar 

  20. D. Granato, G. F. Branco, A. Faria Jde, and A. G. Cruz, J. Sci. Food Agric., 91, 563–569 (2011).

    Article  Google Scholar 

  21. G. L. Feudo, B. Macchione, A. Naccarato, G. Sindona, and A. Tagarelli, Food Res. Int., 44, 781–789 (2011).

    Article  Google Scholar 

  22. R. Zhang, Q. Wu, Y. Xu, and M. C. Qian, J. Food Sci., 79, C1907–1913 (2014).

    Article  Google Scholar 

  23. V. D. Le, X. W. Zheng, J. Y. Chen, and B. Z. Han, J. Instr. Brew., 118, 107–111 (2012).

    Article  Google Scholar 

  24. W. X. Zhang, Z. Y. Wu, Q. S. Zhang, R. Wang, and H. Li, World J. Microbiol. Biotechnol., 25, 172–180 (2009).

    Google Scholar 

  25. J. L. Yang, T. Zhu, Y. Xu, W. L. Fan, and H. Wu, Spectrosc. Spect. Anal., 30, 243–249 (2010).

    Google Scholar 

  26. D. Markechova, P. Majek, and J. Sadecka, Food Chem., 159, 193–198 (2014).

    Article  Google Scholar 

  27. H. Qin, D. Huo, L. Zhang, L. Yang, S. Zhang, M. Yang, C. Shen, and C. Hou, Food Res. Int., 45, 45–51 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-J. Hou.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 2, p. 338, March–April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Huo, DQ., Qin, H. et al. Classification of Aroma Styles and Geographic Origins of Chinese Liquors Using Chemometrics Based on Fluorescence Spectroscopy. J Appl Spectrosc 84, 361–368 (2017). https://doi.org/10.1007/s10812-017-0477-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0477-4

Keywords

Navigation