Modeling of the Autofluorescence Spectra of the Crystalline Lens with Cataract Taking into Account Light Scattering

An Erratum to this article is available

This article has been updated

The model of the autofluorescence spectrum formation of a crystalline lens taking into account light scattering was presented. Cross sections of extinction, scattering and absorption were obtained numerically for models of normal crystalline lens and cataract according to the Mie theory for polydisperse systems. To validate the model, data on the autofluorescence spectra of the normal lens and cataracts were obtained using an experimental ophthalmologic spectrofluorometer with excitation by UV light emitting diodes. In the framework of the model, the influence of the lens light scattering on the shape of the luminescence spectrum was estimated. It was found that the changes in the fluorescence spectrum of lenses with cataracts can be completely interpreted by the light scattering.

This is a preview of subscription content, log in to check access.

Change history

  • 01 August 2017

    An erratum to this article has been published.

References

  1. 1.

    J. Burd, S. Lum, F. Cahn, and K. Ignotz, J. Diabetes Sci. Technol., 6, No. 6, 1251–1259 (2012).

    Article  Google Scholar 

  2. 2.

    M. Klemm, D. Schweitzer, S. Peters, L. Sauer, M. Hammer, and J. Haueisen, PLoS One, 10, No. 7 (2015) e0131640; doi:10.1371/journal.pone.0131640.

    Article  Google Scholar 

  3. 3.

    A. A. Topakova, V. V. Salmin, V. V. Gar’kavenko, J. S. Levchenko, and V. I. Lazarenko, Proc. SPIE, 9917 (2016) 991715(1–4); doi: 10.1117/12.2229816.

    Google Scholar 

  4. 4.

    S. Siik, Acta Ophthalmol. Scand., 77, No. 5, 509–514 (1999).

    Article  Google Scholar 

  5. 5.

    E. S. Vladimirova, V. V. Salmin, A. B. Salmina, S. A. Oskirko, V. I. Lazarenko, and A. S. Provorov, Zh. Prikl. Spektrosk., 79, No. 1, 136–140 (2012) [E. S. Vladimirova, V. V. Salmin, A. B. Salmina, S. A. Oskirko, V. I. Lazarenko, and A. S. Provorov, J. Appl. Spectrosc., 79, 126–130 (2012)].

  6. 6.

    V. Salmin, V. Gar′kavenko, J. Levchenko, D. Skomorokha, E. Vladimirova, A. Solovieva, A. Topakova, and V. Lazarenko, Asia Communications and Photonics Conference 2014, OSA Technical Digest (online), Optical Society of America (2014), ATh3A.203; doi:10.1364/ACPC.2014.ATh3A.203.

  7. 7.

    H. Davson, Physiology of the Eye, Academic Press, New York & San Francisco (1980), pp. 116–164.

    Google Scholar 

  8. 8.

    V. G. Kopaeva, Eye Diseases [in Russian], Meditsina, Moscow (2002), pp. 245–268.

    Google Scholar 

  9. 9.

    L. N. Makley, K. A. McMenimen, B. T. DeVree, J. W. Goldman, B. N. McGlasson, P. Rajagopal, B. M. Dunyak, T. J. McQuade, A. D. Thompson, R. Sunahara, R. E. Klevit, U. P. Andley, and J. E. Gestwicki, Science, 350, No. 6261, 674–677 (2015); doi:10.1126/science.aac9145.

    ADS  Article  Google Scholar 

  10. 10.

    R. Drezek, A. Dunn, and R. Richards-Kortum, Opt. Express, 6, 147–157 (2000).

    ADS  Article  Google Scholar 

  11. 11.

    L. Marti-Lopez, J. Bouza-Dominguez, J. C. Hebden, S. R. Arridge, and R. A. Martinez-Celorio, J. Opt. Soc. Am. A, 20, No. 11, 2046–2056 (2003).

    ADS  Article  Google Scholar 

  12. 12.

    D. A. Rogatkin, Med. Tekh., No. 2, 10–16 (2007).

  13. 13.

    A. V. Priezzhev, V. V. Tuchin, and L. P. Shubochkin, Laser Diagnostics in Biology and Medicine [in Russian], Nauka, Moscow (1989), pp. 68–74.

    Google Scholar 

  14. 14.

    L. E. Paramonov, Opt. Spectrosc., 112, No. 5, 787–795 (2012); doi: 10.1134/S0030400X1205013X.

    ADS  Article  Google Scholar 

  15. 15.

    M. A. Box, S. Y. Lo, B. H. J. McKellar, and M. Reich, Quart. J. R. Met. Soc., 104, 959–969 (1978).

    ADS  Google Scholar 

  16. 16.

    K. A. Shapovalov, Opt. Atmos. Okeana, 6, No. 11, 1411–1415 (1993).

    Google Scholar 

  17. 17.

    V. V. Tuchin and D. M. Zhestkov, Proc. SPIE, 3053, 123–128 (1997); doi: 10.1117/12.266240.

    ADS  Article  Google Scholar 

  18. 18.

    D. M. Zhestkov, I. L. Maksimova, and V. V. Tuchin, Proc. SPIE Ophthalm. Technol. VIII, 3246, 299–306 (1998); doi: 10.1117/12.309445.

    ADS  Article  Google Scholar 

  19. 19.

    K. Boren and D. Khafmen, Absorption and Scattering of Light by Small Particles [Translated from English], Mir, Moscow (1986), pp. 107–164, 602–608.

    Google Scholar 

  20. 20.

    Q. Fu and W. Sun, Appl. Opt., 40, No. 9, 1354–1361 (2001).

    ADS  Article  Google Scholar 

  21. 21.

    M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles, Cambridge Univ. Press, Cambridge (2002), pp. 115–190.

    Google Scholar 

  22. 22.

    J. G. Sivak and T. Mandelman, Vision Res., 22, 997–1003 (1982).

    Article  Google Scholar 

  23. 23.

    Y. Shirao, E. Shirao, T. Iwase, A. Inoue, and S. Matsukawa, Jpn. J. Ophthalmol., 44, 198–204 (2000).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. A. Shapovalov.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 2, pp. 258–263, March–April, 2017.

An erratum to this article is available at https://doi.org/10.1007/s10812-017-0507-2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shapovalov, K.A., Salmin, V.V., Lazarenko, V.I. et al. Modeling of the Autofluorescence Spectra of the Crystalline Lens with Cataract Taking into Account Light Scattering. J Appl Spectrosc 84, 278–283 (2017). https://doi.org/10.1007/s10812-017-0464-9

Download citation

Keywords

  • fluorescence
  • light scattering
  • cataract maturity