Skip to main content

Advertisement

Log in

The Study of Carious Teeth by Laser-Induced Breakdown Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

The aim of this work is a multi-component analysis of the element composition of the enamel and carious parts of teeth and the quantification of enamel demineralization using laser-induced breakdown spectroscopy (LIBS). For each tooth the P/Ca ratios of the emission line intensities in the enamel part and those in the carious regions were compared. Since zinc is a trace element, the same procedure was performed for Zn/Ca ratios in the enamel and carious parts. These comparisons showed that the mineral loss from carious lesions occurs at different rates for the studied elements. Calcium has the highest casualty rate. On the other hand, the zinc level diminishes also in the carious region but at a lower rate. The lines were obtained from plume plasma emission generated on the enamel and carious regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization Technical Report Series No. 242.

  2. S. D. Forssten, M. Björklund, and A. C. Ouwehand, Nutrients, 2, 290–298 (2010).

    Article  Google Scholar 

  3. R. H. Selwitz, A. I. Ismail, and N. B. Pitts, Lancet, 369, 51–59 (2007).

    Article  Google Scholar 

  4. D. T. Zero, J. Clin. Dent., 10, Spec. Iss., 74–85 (1999).

  5. R. Z. Le Geros, J. Clin. Dent., 10, Spec. Iss., 65–73 (1999).

  6. H. C. Margolis, Y. P. Zhang, C. Y. Lee, R. L. Kent Jr., and E. C. Moreno, J. Dent. Res., 78, 1326–1335 (1999).

    Article  Google Scholar 

  7. Q. Xiao, R .Tu, T. He, W. Yin, X. Li, D. Hu, and X. Zhang, Caries Res., 49, 531–539 (2015).

  8. K. Hae-Youn, K. Si-Mook, K. Hee-Eun, K. Ho-Keun, and K. Baek-Il, J. Dent., 43, 568–575 (2015).

    Article  Google Scholar 

  9. R. S. Donald, W. L. Jonathan, G. P. David, and V. S. Michael, Arch. Oral Biol., 58, 603–610 (2013).

    Article  Google Scholar 

  10. S. Yasushi, S. Alireza, F. B. Michael, T. Junji, O. Nobuyoshi, and S. Yasunori, J. Dent., 38, 655–665 (2010).

    Article  Google Scholar 

  11. H. B. Atasoy and Z. I. Ulusoy, Pediatr. Dent., 34, No. 5, 383–386 (2012).

    Google Scholar 

  12. M. M. Fang, K. Y. Lei, and L. T. Kilgore, J. Nutr., 110, No. 5, 1032–1036 (1980).

    Google Scholar 

  13. A. Anttila, Arch. Oral Biol., 11, No 31, 723–726 (1986).

    Article  Google Scholar 

  14. F. Brudevold, L. T. Steadman, M. A. Spinelli, B. H. Amdur, and P. Grøn, Arch. Oral Biol., 2, No. 8, 135–144 (1963).

    Article  Google Scholar 

  15. A. M. El Sherbini, A. A. S. Al Amer, A. T. Hassan, and T. M. El Sherbini, Opt. Photon. J., 2, 278–285 (2012).

    Article  Google Scholar 

  16. Z. M. Madhavi, N. Labbé, G. R. Timothy, and D. W. Stan, Spectrochim. Acta, B, 60, 1179–1185 (2005).

    Article  ADS  Google Scholar 

  17. L. St-Onge, E. Kwong, M. Sabsabi, and E. B. Vadas, J. Pharm. Biomed. Anal., 36, 277–284 (2004).

    Article  Google Scholar 

  18. L. E. Garcýa-Ayuso, J. Amador-Hernández, J. M. Fernández-Romero, and M. D. Luque de Castro, Anal. Chim. Acta, 457, 247–256 (2002).

    Article  Google Scholar 

  19. A. Jurado-López and M. D. Luque de Castro, Talanta, 59, 409–415 (2003).

    Article  Google Scholar 

  20. L. Xian-Yun and Z. Wei-Jun, J. Biomed. Sci. Eng., 1, 147–151 (2008).

    Article  Google Scholar 

  21. K. Akshaya, Y. Fang-Yu, P. S. Jagdish, and B. Shane, Appl. Opt., 43, 5399–5403 (2004).

    Article  Google Scholar 

  22. A. Kumar and P. C. Sharma, Proc. SPIE, 6377, 637701 (2006).

    Article  Google Scholar 

  23. M. D. Adamson and S. J. Rehse, Appl. Opt., 46, 5844–5852 (2007).

    Article  ADS  Google Scholar 

  24. A. El-Hussein, A. K. Kassem, H. Ismail, and M. A. Harith, Talanta, 82, 495–501 (2010).

    Article  Google Scholar 

  25. F. C. Alvira, V. R. Rozzi Fernando, G. A. Torchia, L. Roso, and G. M. Bilmes, J. Anthropol. Sci. JASs Rep., 89, 153–160 (2011).

    Google Scholar 

  26. V. K. Singh and A. K. Rai, Laser Med. Sci., 26, 307–315 (2011).

    Article  Google Scholar 

  27. O. Samek, H. H. Telle, and D. C. S. Beddows, BMC Oral Health, 1, 1–9 (2001).

    Article  Google Scholar 

  28. H. R. Griem, Plasma Spectroscopy, Mc Graw-Hill, New York (1964).

    Google Scholar 

  29. R. J. M. Lynch, Int. Dent. J., 61, Suppl. 3, 46–54 (2011).

    Article  Google Scholar 

  30. S. Hsieh, R. N. Al-Hayali, and J. M. Navia, Trace Elements and Dental Diseases, Wright, Boston (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hamzaoui.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 1, pp. 96–100, January–February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamzaoui, S., Nouir, R. & Jaidene, N. The Study of Carious Teeth by Laser-Induced Breakdown Spectroscopy. J Appl Spectrosc 84, 82–86 (2017). https://doi.org/10.1007/s10812-017-0431-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0431-5

Keywords

Navigation