Skip to main content
Log in

Photoluminescence of Porous Silicon–Zinc Oxide Hybrid structures

  • Published:
Journal of Applied Spectroscopy Aims and scope

Arrays of ZnO nanostructures, which are optically transparent in the visible range, were grown on the surface of porous silicon by electrochemical deposition. Photoluminescence excitation and emission spectra of the obtained hybrid structures were investigated in 220–450 and 400–800 nm regions, respectively. It is established that multicolor emission is formed by combining the luminescence bands of porous silicon and zinc oxide. The possibility of controlling the photoluminescence spectra by changing the excitation energy is demonstrated. It is revealed that thermal annealing has an effect on the luminescent properties of porous silicon/zinc oxide hybrid structures. Thermal processing at 500°С leads to a sharp decrease of long-wavelength luminescence associated with porous silicon and to an increase of short-wavelength luminescence intensity related to zinc oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Bisi, S. Ossicini, and L. Pavesi, Surf. Sci. Rep., 38, 1–126 (2000).

    Article  ADS  Google Scholar 

  2. H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, Mat. Sci. Eng. R., 39, 93–141 (2002).

    Article  Google Scholar 

  3. B. Ünal, A. N. Parbukov, and S. C. Bayliss, Opt. Mater., 17, 79–82 (2001).

    Article  ADS  Google Scholar 

  4. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys., 82, 909–965 (1997).

    Google Scholar 

  5. I. B. Olenych, L. S. Monastyrskii, O. I. Aksimentyeva, and B. S. Sokolovskii, Electron. Mater. Lett., 9, 257–260 (2013).

    Article  ADS  Google Scholar 

  6. L. S. Monastyrskii, O. I. Aksimentyeva, I. B. Olenych, and B. S. Sokolovskii, Mol. Cryst. Liq. Cryst., 589, 124–131 (2014).

    Article  Google Scholar 

  7. A. M. Dorofeev, N. V. Gaponenko, V. P. Bondarenko, E. E. Bachilo, N. M. Kazuchits, A. A. Leshok, G. N. Troyanova, N. N. Vorosov, V. E. Borisenko, H. Gnaser, W. Bock, P. Becker, and H. Oechsner, J. Appl. Phys., 77, 2679–2683 (1995).

    Google Scholar 

  8. N. V. Gaponenko, Acta Phys. Pol. A, 112, 737–749 (2007).

    Article  ADS  Google Scholar 

  9. Z. L. Wang, J. Phys.: Condens. Mat., 16, R829–R858 (2004).

    ADS  Google Scholar 

  10. Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, Mat. Sci. Eng. R., 47, 1–47 (2004).

    Article  Google Scholar 

  11. V. Kapustianyk, B. Turko, I. Luzinov, V. Rudyk, V. Tsybulskyi, S. Malynych, Yu. Rudyk, and M. Savchak, Phys. Status Solidi C, 11, 1501–1504 (2014).

    Article  Google Scholar 

  12. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater., 14, 158–160 (2002).

    Article  Google Scholar 

  13. N. P. Klochko, E. S. Klepikova, G. S. Khripunov, N. D. Volkova, V. R. Kopach, V. N. Lyubov, M. V. Kirichenko, and A. V. Kopach, Fizika i Tekhnika Poluprovodnikov, 49, 219–229 (2015) [N. P. Klochko, K. S. Klepikova, G. S. Khrypunov, N. D. Volkova, V. R. Kopach, V. M. Lyubov, M. V. Kirichenko, and A. V. Kopach, Semiconductors, 49, 214–223 (2015)].

  14. R. G. Singh, F. Singh, V. Agarwal, and R. M. Mehra, J. Phys. D: Appl. Phys., 40, 3090–3093 (2007).

    Article  ADS  Google Scholar 

  15. K. Keramatnejad, F. Khorramshahi, S. Khatami, and E. Asl-Soleimani, Opt. Quant. Electron., 47, 1739–1749 (2015).

    Article  Google Scholar 

  16. L. Martinez, O. Ocampo, Y. Kumar, and V. Agarwal, Nanoscale Res. Lett., 9, 437 (6 pp) (2014).

  17. G. P. Yablonskii, V. N. Pavlovskii, E. V. Lutsenko, V. Z. Zubialevich, A. L. Gurskii, H. Kalisch, A. Szymakowski, R. H. Jansen, A. Alam, B. Schineller, and M. Heuken, Appl. Phys. Lett., 85, 5158–5160 (2004).

    Article  ADS  Google Scholar 

  18. G. P. Yablonskii, E. V. Lutsenko, I. P. Marko, V. N. Pavlovskii, A. V. Mudryi, A. I. Stognij, O. Schön, H. Protzmann, M. Lünenbürger, B. Schineller, M. Heuken, and K. Heime, Phys. Status Solidi A, 180, 149–155 (2000).

    Article  ADS  Google Scholar 

  19. V. Z. Zubialevich, S. N. Alam, H. N. Li, and P. J. Parbrook, J. Phys. D: Appl. Phys., 49, 385105 (2016).

    Article  ADS  Google Scholar 

  20. J. J. Wu and S. C. Liu, Adv. Mater., 14, 215–218 (2002).

    Article  Google Scholar 

  21. K. M. K. Srivatsa, D. Chhikara, and M. S. Kumar, J. Mater. Sci. Technol., 27, 701–706 (2011).

    Google Scholar 

  22. K. B. Sundaram and A. Khan, Thin Solid Films, 295, 87–91 (1997).

    Article  ADS  Google Scholar 

  23. V. V. Gafiychuk, B. K. Ostafiychuk, D. I. Popovych, I. D. Popovych, and A. S. Serednytski, Appl. Surf. Sci., 257, 8396–8401 (2011).

    Article  ADS  Google Scholar 

  24. M. W. Zhu, N. Huang, J. Gong, B. Zhang, Z. J. Wang, C. Sun, and X. Jiang, Appl. Phys. A, 103, 159–166 (2011).

    Article  ADS  Google Scholar 

  25. H. C. Hsu, C. S. Cheng, C. C. Chang, S. Yang, C. S. Chang, and W. F. Hsieh, Nanotechnology, 16, 297–301 (2005).

    Article  ADS  Google Scholar 

  26. I. B. Olenych, Nanoscience and Nanoengineering, 4, 40–45 (2016).

    Google Scholar 

  27. L. T. Canham, Appl. Phys. Lett., 57, 1046–1048 (1990).

    Article  ADS  Google Scholar 

  28. X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, Appl. Phys. Lett., 78, 2285–2287 (2001).

    Article  ADS  Google Scholar 

  29. J. H. Yang, J. H. Zheng, H. J. Zhai, and L. L. Yang, Cryst. Res. Technol., 44, 87–91 (2009).

    Article  Google Scholar 

  30. M. B. Robinson, A. C. Dillon, D. R. Haynes, and S. M. George, Appl. Phys. Lett., 61, 1414–1416 (1992).

    Article  ADS  Google Scholar 

  31. V. A. Kiselev, S. V. Polisadin, and A. V. Postnikov, Fizika i Tekhnika Poluprovodnikov, 31, 830–832 (1997). [V. A. Kiselev, S. V. Polisadin, A. V. Postnikov, Semiconductors, 31, 704–706 (1997)].

  32. I. B. Olenych, L. S. Monastyrskii, B. P. Koman, and A. P. Luchechko, Zh. Prikl. Spektrosk., 83, 126–130 (2016). [I. B. Olenych, L. S. Monastyrskii, B. P. Koman, and A. P. Luchechko, J. Appl. Spectrosc., 83, 111–114 (2016)].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Olenych.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 1, pp. 79–83, January–February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olenych, I.B., Monastyrskii, L.S. & Luchechko, A.P. Photoluminescence of Porous Silicon–Zinc Oxide Hybrid structures. J Appl Spectrosc 84, 66–70 (2017). https://doi.org/10.1007/s10812-017-0428-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0428-0

Keywords

Navigation