Skip to main content
Log in

Fractal analysis of the Rayleigh Photoinduced Light Scattering Pattern from LiNbO3:Zn Crystals

  • Published:
Journal of Applied Spectroscopy Aims and scope

Fractal analysis was used to study Rayleigh photoinduced light scattering (PILS) patterns in a series of LiNbO3:Zn single crystals (0.018–0.88 mass%) that were grown from the congruent melt and were promising as nonlinear optical materials with low photorefraction and coercive-field values. Results from fractal analysis and Raman light-scattering spectroscopy were compared. Extremes found on the time dependence of the fractal dimension of various layers of the PILS pattern speckle structure indicated that the concentration of laser-induced defects in the photorefractive crystal changed. The rate of change of the concentration of laser-induced defects depended non-linearly on the crystal Zn concentration. The form of congruent Zn-doped LiNbO3 crystals with the most ordered structure was identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Obukhovskii and V. V. Lemeshko, Pis′ma Zh. Tekh. Fiz., 11, 1389–1393 (1985).

    Google Scholar 

  2. V. V. Obukhovskii, A. V. Stoyanov, and V. V. Lemeshko, Kvantovaya Elektron. (Moscow), 14, No. 1, 113–121 (1987).

  3. V. V. Obukhovskii and A. V. Stoyanov, Opt. Spektrosk., 58, No. 2, 378–385 (1985).

    Google Scholar 

  4. V. I. Stroganov, N. V. Marchenkov, and A. V. Emel′yanenko, Opt. Spektrosk., 67, No. 3, 982–985 (1989).

  5. V. A. Maksimenko, A. V. Syui, and Yu. M. Karpets, Photo-induced Processes in Lithium Niobate Crystals [in Russian], Fizmatlit, Moscow (2008).

    Google Scholar 

  6. N. V. Sidorov, M. N. Palatnikov, and V. T. Kalinnikov, Dokl. Ross. Akad. Nauk, 441, No. 2, 209–213 (2011) [N. V. Sidorov, M. N. Palatnikov, and V. T. Kalinnikov, Dokl. Phys. Chem., 441, No. 1, 215–218 (2011); doi: 10.1134/S0012501611110029].

  7. N. V. Sidorov, A. V. Syui, M. N. Palatnikov, D. V. Evstratova, and B. N. Mavrin, Opt. Spektrosk., 110, No. 6, 916–922 (2011) [N. V. Sidorov, A. V. Syuy, M. N. Palatnikov, D. V. Evstratova, and B. N. Mavrin, Opt. Spectrosc., 110, No. 6, 864–870 (2011); doi: 10.1134/S0030400X11690026].

  8. N. V. Sidorov, A. V. Syui, M. N. Palatnikov, and V. T. Kalinnikov, Dokl. Ross. Akad. Nauk, 437, No. 3, 352–335 (2011) [N. V. Sidorov, A. V. Syui, M. N. Palatnikov, and V. T. Kalinnikov, Dokl. Phys. Chem., 437, No. 1, 47–49 (2011); doi:10.1134/S0012501611030067].

  9. N. V. Sidorov, E. A. Antonycheva, A. V. Syui, and M. N. Palatnikov, Kristallografiya, 55, No. 6, 1079–1084 (2010) [N. V. Sidorov, E. A. Antonycheva, A. V. Syui, and M. N. Palatnikov, Crystallogr. Rep., 55, No. 6, 1019–1024 (2010); doi: 10.1134/S1063774510060192].

  10. M. Aillerie, P. Bourson, M. Mostefa, F. Abdi, and M. D. Fontana, J. Phys.: Conf. Ser., 416, 012001 (2013).

    Google Scholar 

  11. M. N. Palatnikov, I. V. Biryukova, O. V. Makarova, N. V. Sidorov, V. V. Efremov, I. N. Efremov, N. A. Teplyakova, and D. V. Manukovskaya, Springer Proc. Phys., 175, 87–99 (2016); doi: 10.1007/978-3-319-26324-3.

    Article  Google Scholar 

  12. N. V. Sidorov, A. A. Yanichev, M. N. Palatnikov, A. A. Gabain, and O. Yu. Pikoul, Opt. Spektrosk., 117, No. 1, 76–85 (2014) [N. V. Sidorov, A. A. Yanichev, M. N. Palatnikov, A. A. Gabain, and O. Yu. Pikoul, Opt. Spectrosc., 117, 72–81 (2014); doi: 10.1134/S0030400X14070224].

  13. N. V. Sidorov, M. N. Palatnikov, N. A. Teplyakova, A. A. Gabain, and I. N. Efremov, Opt. Spektrosk., 120, No. 4, 137–143 (2016) [N. V. Sidorov, M. N. Palatnikov, N. A. Teplyakova, A. A. Gabain, and I. N. Efremov, Opt. Spectrosc., 120, No. 4, 633–638 (2016); doi: 10.1134/S0030400X16040226].

  14. T. R. Volk and N. M. Rubinina, Fiz. Tverd. Tela, 33, No. 4, 1192–1201 (1991).

    Google Scholar 

  15. U. Schlarb, M. Woehlecke, B. Gather, A. Reichert, K. Betzler, T. Volk, and N. Rubinina, Opt. Mater., 4, 791–795 (1995).

    Article  ADS  Google Scholar 

  16. Y. Zhang, Y. H. Xu, M. H. Li, and Y. Q. Zhao, J. Cryst. Growth, 233, 537–540 (2001).

    Article  Google Scholar 

  17. F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, and M. Wohlecke, Appl. Phys. B: Lasers Opt., 68, 795–799 (1999).

    Article  ADS  Google Scholar 

  18. N. V. Sidorov, T. R. Volk, B. N. Mavrin, and V. T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum, Polaritons [in Russian], Nauka, Moscow (2003).

    Google Scholar 

  19. A. V. Syui, M. N. Litvinova, P. S. Goncharova, N. V. Sidorov, M. N. Palatnikov, V. V. Krishtop, and V. V. Likhtin, Zh. Tekh. Fiz., 83, No. 5, 109–114 (2013) [A. V. Syuy, M. N. Litvinova, P. S. Goncharova, N. V. Skidorov, M. N. Palatnikov, V. V. Krishtop, and V. V. Likhtin, Tech. Phys., 58, No. 5, 730–734 (2013); doi: 10.1134/S1063784213050241].

  20. N. V. Sidorov, M. N. Palatnikov, N. A. Teplyakova, A. A. Gabain, and I. N. Efremov, Perspekt. Mater., No. 7, 5–14 (2015).

    Google Scholar 

  21. M. N. Palatnikov, N. V. Sidorov, I. V. Biryukova, O. B. Shcherbina, and V. T. Kalinnikov, Perspekt. Mater., No. 2, 93–97(2011).

    Google Scholar 

  22. M. N. Palatnikov, I. V. Biryukova, O. V. Makarova, V. V. Efremov, O. E. Kravchenko, V. I. Skiba, N. V. Sidorov, and I. N. Efremov, Neorg. Mater., 51, No. 4, 428–432 (2015) [M. N. Palatnikov, I. V. Biryukova, O. V. Makarova, V. V. Efremov, O. E. Kravchenko, V. I. Skiba, N. V. Sidorov, and I. N. Efremov, Inorg. Mater., 51, No. 4, 375–379 (2015); doi: 10.1134/S0020168515040123].

  23. B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Co., San Francisco (1982).

    MATH  Google Scholar 

  24. R. M. Crownover, Introduction to Fractals and Chaos, Jones and Bartlett Publ. Inc., MA, USA (1995).

    Google Scholar 

  25. H. Haken, Synergetics, Springer-Verlag, New York (1978).

    Book  MATH  Google Scholar 

  26. Yu. L. Klimontovich, Introduction to the Physics of Open Systems [in Russian], Yanus-K, Moscow (2002).

    Google Scholar 

  27. N. V. Sidorov, A. A. Kruk, A. A. Yanichev, M. N. Palatnikov, and V. T. Kalinnikov, Dokl. Ross. Akad. Nauk, 459, No. 1, 58–61 (2014) [N. V. Sidorov, A. A. Kruk, A. A. Yanichev, M. N. Palatnikov, and V. T. Kalinnikov, Dokl. Phys. Chem., 459, No. 1, 173–176 (2014); doi: 10.1134/S0012501614110025].

  28. N. V. Sidorov, D. V. Manukovskaya, and M. N. Palatnikov, Opt. Spektrosk., 118, No. 6, 108–117 (2015) [N. V. Sidorov, D. V. Manukovskaya, and M. N. Palatnikov, Opt. Spectrosc., 118, No. 6, 955–963 (2015); doi: 10.1134/S0030400X15060193].

  29. E. A. Antonycheva, Structural Disorder in Lithium Niobate Single Crystals and Its Manifestation in Photorefractive and Raman Light Scattering, Candidate Dissertation, Khabarovsk (2012).

    Google Scholar 

  30. N. V. Sidorov, A. A. Yanichev, M. N. Palatnikov, and A. A. Gabain, Opt. Spektrosk., 116, No. 1, 99–108 (2014) [N. V. Sidorov, A. A. Yanichev, M. N. Palatnikov, and A. A. Gabain, Opt. Spectrosc., 116, No. 2, 281–290 (2014); doi: 10.1134/S0030400X14010202].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Manukovskaya.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 1, pp. 63–71, January–February, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidorov, N.V., Manukovskaya, D.V. & Palatnikov, M.N. Fractal analysis of the Rayleigh Photoinduced Light Scattering Pattern from LiNbO3:Zn Crystals. J Appl Spectrosc 84, 52–58 (2017). https://doi.org/10.1007/s10812-017-0426-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0426-2

Keywords

Navigation