Skip to main content

Silver Nanoparticles Synthesized by Decomposition of a Silver Organic Complex with Valence Tautomerism and Their Properties

Features of the formation of silver nanoparticles (Ag-NPs) via intramolecular redox transformation of the Ag(I) complex of 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde isonicotinoylhydrazone in organic solvents with donor numbers DN > 19 were studied. The stability of the organic sols depended on the nature of the dispersion medium and the presence of oxygen and water in it. The physical chemistry and morphology of the Ag-NP in the organic sol were investigated using molecular absorption spectroscopy, transmission electron microscopy, and atomic force microscopy. The silver sol consisted of spherical Ag-NPs 5–20 nm in size with a characteristic absorption band near 440 nm. It was found that the silver complex with valence tautomerism was a promising precursor for Ag-NPs. The synthesized Ag-NPs showed high antimicrobial activity compared with standard antibiotics and Ag-containing agents (MIC = 0.007 μmol/mL).

This is a preview of subscription content, access via your institution.


  1. G. M. Neelgund, B. Karthikeyan, S. A. Shivashankar, and A. Oki, Appl. Surf. Sci., 356, 726–731 (2015).

    ADS  Article  Google Scholar 

  2. S. I. Stoeva, F. Huo, J.-S. Lee, and C. A. Mirkin, J. Am. Chem. Soc., 127, 15362–15363 (2005).

    Article  Google Scholar 

  3. C.-S. Cheng, Y.-Q. Chen, and C.-J. Lu, Talanta, 73, 358–365 (2007).

    Article  Google Scholar 

  4. A. Gupta and S. Silver, Nat. Biotechnol., 16, 888–992 (1998).

    Article  Google Scholar 

  5. K. Nomiya, A. Yoshizawa, K. Tsukagoshi, N. C. Kasuga, S. Hirakawa, and J. Watanabe, J. Inorg. Biochem., 98, 46–60 (2004).

    Article  Google Scholar 

  6. J. S. Kim, E. Kuk, N. Yu, J. Kim, S. J. Park, and J. Lee, Nanomedicine (N.Y., NY, U.S.), 3, 95–101 (2007).

  7. A. Inoue, O. Ishimoto, S. Fukumoto, K. Usui, T. Suzuki, and H. Yokouchi, Ann. Oncol., 21, 800–803 (2010).

    Article  Google Scholar 

  8. A. R. Shahverdi, A. Fakhimi, H. R. Shahverdi, and S. Minaian, Nanomedicine (N.Y., NY, U.S.), 3, 168–171 (2007).

  9. P. Prema, in: Progress in Molecular and Environmental BioengineeringFrom Analysis and Modeling to Technology Applications, A. Carpi (ed.), InTech, Rijeka (2011), pp. 151–167.

  10. M. Rai, A. Yadav, and A. Gade, Biotechnol. Adv., 27, 76–83 (2009).

    Article  Google Scholar 

  11. G. M. Neelgund, A. Oki, and Z. Luo, Colloids Surf., B, 100, 215–221 (2012).

  12. M. Guzman, J. Dille, and S. Godet, Nanomedicine (N.Y., NY, U.S.), 8, 37–45 (2012).

  13. G. R. Nasretdinova, R. R. Fazleeva, R. K. Mukhitova, I. R. Nizameev, M. K. Kadirov, and A. Y. Ziganshina, Electrochem. Commun., 50, 69–72 (2015).

    Article  Google Scholar 

  14. X. Zhang, S. Xu, S. Jiang, J. Wang, J. Wei, and S. Xu, Appl. Surf. Sci., 353, 63–70 (2015).

    ADS  Article  Google Scholar 

  15. M. A. Valverde-Alva, T. Garcia-Fernandez, M. Villagran-Muniz, C. Sanchez-Ake, R. Castaneda-Guzman, and E. Esparza-Alegria, Appl. Surf. Sci., 355, 341–349 (2015).

    ADS  Article  Google Scholar 

  16. M. E. El-Naggar, T. I. Shaheen, M. M. G. Fouda, and A. A. Hebeish, Carbohydr. Polym., 136, 1128–1136 (2016).

    Article  Google Scholar 

  17. S. M. Hosseinpour-Mashkani and M. Ramezani, Mater. Lett., 130, 259–262 (2014).

    Article  Google Scholar 

  18. A. A. Soayed, Inorg. Chim. Acta, 429, 257–265 (2015).

    ADS  Article  Google Scholar 

  19. N. V. Loginova, A. A. Chernyavskaya, G. I. Polozov, T. V. Koval′chuk, E. V. Bondarenko, and N. P. Osipovich, Polyhedron, 24, 611–618 (2005).

  20. N. V. Loginova, T. V. Koval′chuk, A. T. Gres, N. P. Osipovich, G. I. Polozov, and Y. S. Halauko, Polyhedron, 88, 125–137 (2015).

  21. N. Loginova, A. Chernyavskaya, G. Polozov, N. Osipovich, T. Koval'chuk, and A. Gres, Mini-Rev. Org. Chem., 10, 227–240 (2013).

    Article  Google Scholar 

  22. N. V. Loginova, T. V. Kovalchuk, N. P. Osipovich, Y. V. Faletrov, Y. S. Halauko, G. I. Polozov, T. A. Gres, H. I. Harbatsevich, R. A. Zheldakova, and V. M. Shkumatov, in: Cytochrome C: Electrochemistry, Biological Functions and Pathophysiological Implications, Nova Science Publishers, Hauppauge, New York (2014), pp. 121–172.

  23. N. V. Loginova, A. A. Chernyavskaya, M. S. Parfenova, N. P. Osipovich, G. I. Polozov, and Y. A. Fedutik, Polyhedron, 25, 1723–1728 (2006).

    Article  Google Scholar 

  24. V. Lorian (ed.), Antibiotics in Laboratory Medicine, Lippincott Williams & Wilkins, Philadelphia (2005).

    Google Scholar 

  25. P. Mulvaney, Langmuir, 12, 788–800 (1996).

    Article  Google Scholar 

  26. Y. Yonezawa, S. Onoue, and N. Kimizuka, Langmuir, 16, 5218–5220 (2000).

    Article  Google Scholar 

  27. Powder Diffraction File JCPDS INT, Center for Diffraction Data, Swarthmore (1989).

  28. A. A. Domorad, M. V. Krasnova, and G. E. Afi nogenov, Klin. Mikrobiol. Antimikrob. Khimioter., 3, 13–14 (2001).

  29. R. N. Kostyleva, V. A. Burmistrov, and O. A. Polunina, in: Proc. Sci.-Pract. Conf. ″Silver and Bismuth in Medicine″ [in Russian], February 25–26, 2005, Novosibirsk (2005), pp. 53–60.

  30. A. Carrillo-Munoz, G. Quindos, and J. Lopez-Ribot, Curr. Med. Chem.: Anti-Infect. Agents, 3, 297–323 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to H. I. Harbatsevich.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 84, No. 1, pp. 19–25, January–February, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Harbatsevich, H.I., Loginova, N.V., Koval′chuk, T.V. et al. Silver Nanoparticles Synthesized by Decomposition of a Silver Organic Complex with Valence Tautomerism and Their Properties. J Appl Spectrosc 84, 13–18 (2017).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • silver nanoparticles
  • silver complex with valence tautomerism
  • molecular absorption spectroscopy
  • transmission electron microscopy
  • atomic force microscopy
  • antimicrobial activity