Skip to main content
Log in

Determination of Trace Amounts of Chromium(III) in Water Samples Using Online Flow Injection Catalytic Spectrophotometry

  • Published:
Journal of Applied Spectroscopy Aims and scope

A new online flow injection spectrophotometric method for the determination of trivalent chromium was developed. This method is based on the property of trivalent chromium to be a catalyst for the oxidation of Indigo Carmine (IC) with potassium periodate and to lose its color in the presence of ethylenediaminetetraacetic acid and sodium tripolyphosphate. It was shown that Tween-20 serves as an additional accelerator of the catalytic oxidation. The linear dynamic range of the determination of Cr(III) was 1–40.0 μg/L, while the limit of detection was 0.05 μg/L. The correlation coefficient r was 0.998, while the relative standard deviation for 5 μg/L of the Cr(III) solution was 3.83%. The feasibility of this method was checked by its application to trivalent chromium determination in real water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Vincent, J. Nutr., 130, 715–718 (2000).

    Google Scholar 

  2. M. E. Losi, C. Amrhein, and W. T. Frankenberger, Rev. Environ. Contam. T., 136, 91–121 (1994).

    Google Scholar 

  3. Y. Wang, W. T. Xu, Y. B. Luo, L. Y. Ma, Y. S. Li, S. R. Yang, and K. L. Huang, J. Sci. Food Agric., 89, 947–952 (2009).

    Article  Google Scholar 

  4. C. Cervantes, J. C. Garcia, S. Devars, F. G. Corona, H. L. Avera, J. C. T. Guzman, and R. M. Sanchez, FEMS Microbiol. Rev., 25, 335–347 (2001).

    Article  Google Scholar 

  5. A. Elbetieha and M. H. Al-Hamood, Toxicology, 116, 39–47 (1997).

    Article  Google Scholar 

  6. A. Levina and P. A. Lay, Chem. Res. Toxicol., 21, 563–571 (2008).

    Article  Google Scholar 

  7. R. Escobar, Q. Lin, A. Guiraum, and F. F. De La Rosa, Int. J. Environ. Anal. Chem., 61,169–175 (1995).

    Article  Google Scholar 

  8. United States Environmental Protection Agency EPA 816-F-09-004 (2009).

  9. J. X. Du, Y. H. Li, and R. Guan, Microchim. Acta, 158, 145–150 (2007).

    Article  Google Scholar 

  10. K. M. Kim, Y. H. Kim, S. H. Oh, and S. H. Lee, Luminescence, 28, 372–377 (2013).

    Article  Google Scholar 

  11. W. R. Seitz, W. W. Suydam, and D. M. Hercules, Anal. Chem., 44, 957 (1972).

    Article  Google Scholar 

  12. Y. M. Martinez, S. M. Lloret, L. A. T. Genaro, and P. C. Falco, Talanta, 60, 257–268 (2003).

    Article  Google Scholar 

  13. H. Q. Chen, Y. Wu, Y. Y. Zhang, Y. Y. Guan, and L. Wang, Luminescence, 29, 642–648 (2014).

    Article  Google Scholar 

  14. M. Grabarczyk, K. Tyszczuk, and M. Korolczuk, Electroanal., 18, 1223–1226 (2006).

    Article  Google Scholar 

  15. H. A. Zamani and S. Sahebnasagh, Int. J. Electrochem. Sci., 8, 3708–3720 (2013).

    Google Scholar 

  16. T. A. Ali, A. L. Saber, G. G. Mohamed, and T. M. Bawazeer, Int. J. Electrochem. Sci., 9, 4932–4943 (2014).

    Google Scholar 

  17. M. Sperling, S. K. Xu, and B. Welz, Anal. Chem., 64, 3101–3108 (1994).

    Article  Google Scholar 

  18. R. Milaeie and J. Stupar, Analyst, 119, 627–632 (1994).

    Article  ADS  Google Scholar 

  19. Y. Z. Ren, Z. F. Fan, and J. Y. Wang, Microchim. Acta, 158, 227–231 (2007).

    Article  Google Scholar 

  20. T. Inui, K. Fujita, M. Kitano, and T. Nakamura, Anal. Sci., 26, 1093–1098 (2010).

    Article  Google Scholar 

  21. P. Schramel, L. Q. Xu, G. Knapp, and M. Michaelis, Microchim. Acta, 106, 191–201 (1992).

    Article  Google Scholar 

  22. Y. Inoue, T. Sakai, and H. Kumagai, J. Chromatogr. A, 706, 127–136 (1995).

    Article  Google Scholar 

  23. N. Zhang, J. S. Suleiman, M. He, and B. Hu, Talanta, 75, 536–543 (2008).

    Article  Google Scholar 

  24. J. Lintschinger, K. Kalcher, W. Gossler, G. Kolbl, and M. Novic, Fresenius J. Anal. Chem., 351, 604–609 (1995).

    Article  Google Scholar 

  25. A. M. Stoyanova, Turk. J. Chem., 29, 367–375 (2005).

    Google Scholar 

  26. A. S. Amin and M. A. Kassem, Spectrochim. Acta A, 96, 541–547 (2012).

    Article  ADS  Google Scholar 

  27. S. Nakano, N. Teshima, M. Kurihara, and T. Kawashima, Bunseki Kagaku, 53, 255–269 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. S. Zhang.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 83, No. 6, p. 1009, November–December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z.X., Zhang, X.S. Determination of Trace Amounts of Chromium(III) in Water Samples Using Online Flow Injection Catalytic Spectrophotometry. J Appl Spectrosc 83, 1084–1088 (2017). https://doi.org/10.1007/s10812-017-0411-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-017-0411-9

Keyword

Navigation