Journal of Applied Spectroscopy

, Volume 83, Issue 4, pp 534–540 | Cite as

Analytical Approximation of the Deconvolution of Strongly Overlapping Broad Fluorescence Bands

Article

A method for deconvoluting strongly overlapping spectral bands into separate components that enables the uniqueness of the deconvolution procedure to be monitored was proposed. An asymmetric polynomial-modified function subjected to Fourier filtering (PMGFS) that allowed more accurate and physically reasonable band shapes to be obtained and also improved significantly the deconvolution convergence was used as the band model. The method was applied to the analysis of complexation in solutions of the molecular probe 4′-(diethylamino)-3-hydroxyflavone with added LiCl. Two-band fluorescence of the probe in such solutions was the result of proton transfer in an excited singlet state and overlapped strongly with stronger spontaneous emission of complexes with the ions. Physically correct deconvolutions of overlapping bands could not always be obtained using available software.

Keywords

fluorescence proton transfer ion–molecule complex deconvolution of poorly resolved spectra into asymmetric bands 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Gooijer, F. Ariese, and J. W. Hofstraat (Eds.), Shpol′skii Spectroscopy and Other Site-Selection Methods: Applications in Environmental Analysis, Bioanalytical Chemistry, and Chemical Physics, Wiley Interscience, New York (2000).Google Scholar
  2. 2.
    H. Bassler and B. Schweitzer, Acc. Chem. Res., 32, No. 2, 173–182 (1999).CrossRefGoogle Scholar
  3. 3.
    J. R. Lakowicz, Principles of Fluorescent Spectroscopy, 3rd edn., Springer Science+Business Media, New York (2006).CrossRefGoogle Scholar
  4. 4.
    A. P. Demchenko, Introduction to Fluorescence Sensing, Springer, New York (2009).CrossRefGoogle Scholar
  5. 5.
    E. I. Kapinus, Photonics of Molecular Complexes [in Russian], Naukova Dumka, Kiev (1988).Google Scholar
  6. 6.
    B. Valeur, Molecular Fluorescence. Principles and Applications, 4th edn., Wiley-VCH, Weinheim (2007).Google Scholar
  7. 7.
    V. I. Tomin, Proton transfer reactions in the excited electronic states, in: Hydrogen Bonding and Transfer in the Excited State, K.-L. Han and G.-J. Zhao (Eds.), Vol. 2, Wiley-Blackwell, Oxford (2011), pp. 463–523.Google Scholar
  8. 8.
    V. I. Tomin and D. V. Ushakou, J. Lumin., 166, 313–321 (2015).CrossRefGoogle Scholar
  9. 9.
    V. I. Tomin and D. V. Ushakov, Zh. Prikl. Spektrosk., 82, No. 2, 198–205 (2015) [V. I. Tomin and D. V. Ushakou, J. Appl. Spectrosc., 82, No. 2,193–199 (2015)].Google Scholar
  10. 10.
    A. P. Demchenko, Luminescence, 17, No. 1, 19–42 (2002).MathSciNetCrossRefGoogle Scholar
  11. 11.
    N. A. Nemkovich, A. N. Rubinov, and V. I. Tomin, in: Topics in Fluorescence Spectroscopy, Principles, J. R. Lakowicz (Ed.), Vol. 2, Plenum Press, New York (1991), pp. 367–428.Google Scholar
  12. 12.
    L. G. Arnaut and S. J. Formosinho, J. Photochem. Photobiol., A, 75, No. 1, 1–20 (1993).Google Scholar
  13. 13.
    P. K. Sengupta and M. Kasha, Chem. Phys. Lett., 68, No. 2–3, 382–385 (1979).ADSCrossRefGoogle Scholar
  14. 14.
    M. Kasha, J. Chem. Soc. Faraday Trans., 82, No. 12, 2379–2392 (1986).CrossRefGoogle Scholar
  15. 15.
    J. M. Dubrovkin, V. I. Tomin, and D. V. Ushakou, 18th Int. Conf. "Isranalytica-2016," Tel-Aviv, Israel (2016); https://bioforumconf.com/isranalytica-abs/outofhtml/isranalytica_2016/mathematicalmo_Joseph_Dubrovkin.html
  16. 16.
    V. B. Di Marco and G. G. Bombi, J. Chromatogr. A, 931, 1–30 (2001).CrossRefGoogle Scholar
  17. 17.
    V. I. Tomin, in: Springer Series on Fluorescence, Methods and Applications. 8. Advanced Fluorescence Reporters in Chemistry and Biology. I. Fundamentals and Molecular Design, A. P. Demchenko (Ed.), Springer, Heidelberg–Dordrecht–London–New York (2010), pp. 189–223.Google Scholar
  18. 18.
    V. I. Tomin, A. P. Demchenko, and P.-T. Chou, J. Photochem. Photobiol., C, 22, 1–18 (2015).Google Scholar
  19. 19.
    I. G. Shere, V. P. Pawar, and S. C. Mehrotra, J. Mol. Liq., 133, 116–119 (2007).CrossRefGoogle Scholar
  20. 20.
    N. A. Nemkovich, W. Baumann, and V. Pivovarenko, J. Photochem. Photobiol., A, 153, 19–24 (2002).Google Scholar
  21. 21.
    Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT (2009).Google Scholar
  22. 22.
    G. A. F. Seber and C. J. Wild, Nonlinear Regression, Wiley, New York (2005).MATHGoogle Scholar
  23. 23.
    W. Caarls, M. S. Celej, A. P. Demchenko, and T. M. Jovin, J. Fluoresc., 20, 181–190 (2010).CrossRefGoogle Scholar
  24. 24.
    J. Dubrovkin, Chemom. Intell. Lab. Syst., 153, 9–21 (2016).CrossRefGoogle Scholar
  25. 25.
    MathWorks, MATLAB; http://www.mathworks.com
  26. 26.
    I. M. Dubrovkin, Zh. Prikl. Spektrosk., 39, No. 6, 885–898 (1983) [I. M. Dubrovkin, J. Appl. Spectrosc., 39, 1341–1353 (1983)].Google Scholar
  27. 27.
    J. Dubrovkin, Int. J. Emerging Technol. Comput. Appl. Sci., 1, No. 14, 76–80 (2015).Google Scholar
  28. 28.
    V. I. Tomin, S. Oncul, G. Smolarczyk, and A. P. Demchenko, Chem. Phys., 342, 126–134 (2007).ADSCrossRefGoogle Scholar
  29. 29.
    V. I. Tomin and G. Smolyarchik, Opt. Spektrosk., 104, 919–925 (2008) [V. I. Tomin and G. Smolarczyk, Opt. Spectrosc., 104, 832–837 (2008)].Google Scholar
  30. 30.
    V. I. Tomin, Zh. Fiz. Khim., 84, 116–125 (2010) [V. Tomin, Russ. J. Phys. Chem. A, 84, 109–117 (2010)].Google Scholar
  31. 31.
    V. I. Tomin, Opt. Spektrosk., 113, 35–44 (2012) [V. Tomin, Opt. Spectrosc., 113, 41–52 (2012)].Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • J. M. Dubrovkin
    • 1
  • V. I. Tomin
    • 2
  • D. V. Ushakou
    • 2
  1. 1.The Western Galilee CollegeAcreIsrael
  2. 2.Institute of Physics, Pomeranian UniversitySlupskPoland

Personalised recommendations