Skip to main content
Log in

Surfactant-Assisted Nanodrop Spectrophotometer Determination of Iron(III) in a Single Drop of Food, Biological, and Environmental Samples

  • Published:
Journal of Applied Spectroscopy Aims and scope

A surfactant-assisted nanodrop spectrophotometric (NDS) method has been developed for the determination of the iron(III) content in single drops (1 μL) of food, biological, and or environmental sample using disodium 1-nitroso-2-naphthol-3,6-sulfonate (Nitroso-R salt) as a complexing agent and Tween-80 as non-ionic surfactant at pH 4.0. This method is based on the formation of a complex between the Fe(III) present in a sample and the Nitroso-R-salt in the presence of a surfactant to form a green-colored Fe(III)–Nitroso-R salt complex, which can be measured using a NDS method at a λ max = 710 nm. This system was found to obey Beer’s law at concentrations in the range of 50–5000 μg/L with slope, intercept and correlation coefficient values of 0.683, 0.102, and 0.986, respectively. The molar absorptivity of the complex in terms of the Fe(III) content was determined to be 4.86 × 10 5 L·mol –1·cm –1 . The detection limit and %RSD values of the method were found to be 17 × 10–3 mg/L and ±1.3706%, respectively. This newly developed method was successfully applied to the determination of the Fe(III) content in single drops of food, biological, and environmental samples, and the results were compared with those obtained by atomic absorption spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. H. Bothwell, R. W. Charlton, J. D. Cook, and C. A. Finch, Iron Metabolism in Man, Blackwell Scientific, Oxford, 7 (1979).

  2. J. Suwansaksri, S.S. Sookarun, V. Wiwanitkit, C. Boonchalermvichian, and I. Nuchprayoon, Lab Hematol., 9, No. 4, 234–236 (2003).

    Google Scholar 

  3. J. H. Martin and S. E. Fitzwater, Nature, 331b, 341–342 (1988).

    Article  ADS  Google Scholar 

  4. S. Bando, T. Takano, T. Yubisui, K. Shirabe, M. Takeshita, and A. Nakagawa, Acta Crystallogr. D: Biol. Crystallogr., 60, 1929–1934 (2004).

    Article  Google Scholar 

  5. http://www.rtso.ca/methemoglobin-causes-effects

  6. Denshaw-Burke, Mary (2006-11-07). Methemoglobinema. Retrieved 2008-03-31.

  7. R. R. Crichton and M. Charloteaux-Wauters, Eur. J. Biochem., 164, No. 3, 485–506 (1987).

    Article  Google Scholar 

  8. M. F. Macedo and M. de Sousa, Inflamm. & Allergy Drug Targets, 7, No. 1, 41–52 (2008).

    Article  Google Scholar 

  9. http://geocleanse.com/fentonsreagent.asp

  10. F. Haber and J. Weiss, Naturwissenschaften, 20, No. 51, 948–950 (1932).

    Article  ADS  Google Scholar 

  11. M. J. Hall, J. Royal Soc. Med., 81, No. 5, 280–283 (1988).

    Google Scholar 

  12. http://iron overload treatment.com/(The new instrument to measure iron overload)

  13. N. Otero, L. Vitoria, A. Soler, and A. Canal, Appl. Geochem., 20, 1473–1488 (2005).

    Article  Google Scholar 

  14. J. Benton Jones Jr., Spectrochim. Acta, 38B, 271–276 (1982).

    ADS  Google Scholar 

  15. T. B. Nordstrom, D. K. Cunningham, K. M. Ball, and J. W. Mccleskey, Environ. Sci. Technol., 33, 807–813 (1999).

    Article  ADS  Google Scholar 

  16. A. A. Chodos and W. Nichiporuk, Proc. 7th Annual Industrial Conference on Industrial Application of X-ray Analysis, Univ. of Denver, 247–255 (1958).

  17. J. T. M. De Jong, J. Den Das, U. Bathmann, M. H. C. Stoll, G. Kattner, R. F. Nolting, and H. J. W. de Baar, Anal. Chim. Acta, 377, 113–117 (1998).

    Article  Google Scholar 

  18. S. Blain and P. Treguer, Anal. Chim. Acta, 308, 425–429 (1995).

    Article  Google Scholar 

  19. Y. Sohrin, S. Iwamoto, S. Akiyama, T. Fujita, T. Kugii, H. Obata, E. Nakayama, S. Goda, Y. Fujishima, H. Hasegawa, K. Ueda, and M. Matsui, Anal. Chim. Acta, 363, 11–16 (1998).

    Article  Google Scholar 

  20. J. F. Wu and E. A. Boyle, Anal. Chim. Acta, 367, 183–187 (1998).

    Article  Google Scholar 

  21. X. P. Yan, M. J. Hendry, and R. Kerrich, Anal. Chem. Acta, 72, 1879–1885 (2000).

    Article  Google Scholar 

  22. P. L. Croot and M. Johansson, Electroanalysis, 12, 565–576 (2000).

    Article  Google Scholar 

  23. P. Pulido-Tofiño, J. M. Barrero-Moreno, and M. C. Pérez-Conde, Talanta, 51, 537–542 (2000).

    Article  Google Scholar 

  24. S. Schnell, S. Ratering, and K. H. Jansen, Environ. Sci. Technol., 32, 1530–1536 (1998).

    Article  ADS  Google Scholar 

  25. H. W. Josephs, J. Lab Clin. Med., 44, No. 1, 63–74 (1954).

    Google Scholar 

  26. S. Kawakubo, A. Naito, A. Fujihara, and M. Iwatsuki, Anal. Sci., 20, No. 8, 159–1163(scn) (2004).

  27. C. Siffert, L’effect de la lumere sur la dissolution des oxides de Fe(III) dans les milieu aqueux, PhD Thesis, ETH-Zurich, Switzerland (1989).

  28. S. M. Cohen, B. O. Sullivan, and K. N. Raymond, Inorg. Chem., 39, 4339–4344 (2000).

    Article  Google Scholar 

  29. Jafarian-Dehlkordi, L. Saghaie, and N. Movahedi, DARU J. Pharm. Sci., 16, No. 2, 76–82 (2008).

    Google Scholar 

  30. L. Jianzhong and Z. Zhujun, Microchem. J., 52, 315–319 (1995).

    Article  Google Scholar 

  31. Z. Holzbecher, L. Davis, M. Kral, L. Sucha, and F. Vlacil, Handbook of Organic Reagents in Inorganic Analysis, Ellis Horwood Limited, New York (1976).

    Google Scholar 

  32. K. Vijaya Raju, K. Koteswara Rao, K. Raj Kumar, T. Rambabu, and G. Bangarraju, Der Pharma Chem., 5, No. 6, 62–68 (2013).

    Google Scholar 

  33. J. F. Reed, A. Mehlich, J. R. Piland, Soil Sci. Soc. Am. J., 9, 56–60 (1945).

    Article  Google Scholar 

  34. A. N. Tripathi, S. Ehikhalikar, K. S. Patel, J. Automat. Chem., 19, 45–50 (1997).

    Article  Google Scholar 

  35. H. Abdollahi, M. Shariat Panahi, and M. Reza Khoshayand, Iran. J. Pharm. Res., 207–213 (2003).

  36. http://www.nanodrop.com/library/nd-1000-v3.7-users-manual-8.5x11.pdf.

  37. Ashok K. Sharma and Ishwar Singh, Food Anal. Methods, 2, 221–225 (2009).

    Article  Google Scholar 

  38. H. H. Hsu, S. M Fenstone, and J. H. Hoofnagle, in: G. I. Mandel, I. E. Benett, and R. Dolin, (Eds.), Principles & Practice of Infections Diseases, Eds. Churchill Livingstone, New York, pp. 1136–1153 (1995).

  39. E. L. Krawitt, in: G. I. Mandel, I. E. Benett, and R. Dolin, (Eds.), Principles & Practice of Infections Diseases, Churchill Livingstone, New York pp. 1153–1159 (1995).

  40. S. Krunetr, W. Thanasarakhan, U. Tengjaroenkul, B. Liawruangrath, S. Liawruangrath, J. Flow Injection Anal., 24, 114–118 (2007).

    Google Scholar 

  41. D. D. Perrin, Organic Complexing Reagents: Structure, Behavior, and Application to Inorganic Analysis, Interscience Publishers, New York (1964).

    Google Scholar 

  42. E. A. Reshetnyak, N. V. Ivchenko, and N. A. Nikitina, Centr. Eur. J. Chem., 10, No. 5, 1617–1623 (2012).

    Article  Google Scholar 

  43. G. Jahanbakhsh, S. Nahid, and R. S. Hamid, Anal. Chem. Acta, 510, No. 1, 121 (2004).

    Article  Google Scholar 

  44. A. H. M. Stahr, Analytical Methods in Toxicology, John Wiley and Sons, New York, 3, 75 (1991).

  45. Ensafi , M. Chamjangali, and H. Rahami Mansour, Anal. Sci., 20, 645–650 (2004).

    Article  Google Scholar 

  46. Safavi and M. R. Hormozinezhad, Can. J. Anal. Sci. Spectrosc., 49, 210–217 (2004).

    Google Scholar 

  47. A. Shokrollahi, M. Ghaedi, and H. R. Rajabi, Annal. Chim., 97, 823–836 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tapadia.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 6, p. 970, November–December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Tapadia, K., Sahin, R. et al. Surfactant-Assisted Nanodrop Spectrophotometer Determination of Iron(III) in a Single Drop of Food, Biological, and Environmental Samples. J Appl Spectrosc 82, 1064–1071 (2016). https://doi.org/10.1007/s10812-016-0230-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-016-0230-4

Keywords

Navigation