Skip to main content
Log in

Simulated Investigation of Optical Properties in Noble Metallic Alloy Nanosphere

  • Published:
Journal of Applied Spectroscopy Aims and scope

Extinction efficiencies of Ag–Cu and Ag–Au alloy nanospheres are studied based on the Mie theory. The effect of the radius size and the alloy composition on the extinction efficiency has been considered. In alloy nanoparticles such as Ag x Au 1–x nanospheres, the extinction efficiencies vary with the Ag component x. The full width half maxima of the extinction efficiency band becomes broad with decrease in x, however the extinction peak value decreases at the same time. The optimal radius was investigated when double equal extinction peaks arise and the modulation effect of the extinction efficiencies was found. While the Ag component x increases, the extinction peak value becomes greater, but the separation distance between the peaks decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Anger, P. Bharadwaj, and L. Novotny, Phys. Rev. Lett., 96, 113002(1–4) (2006).

  2. G. Sun and J. B. Khurgin, Phys. Rev. A, 85, 063410 (2012).

    Article  ADS  Google Scholar 

  3. H. A. Atwater and A. Polman, Nat. Mater., 9, 205–213(2010).

    Article  ADS  Google Scholar 

  4. A. Alexandre and L. Dang Yuan, Nano Lett., 10, 2574–2579 (2010).

    Article  ADS  Google Scholar 

  5. P. Tuersun and X. Han, Optik, 125, 3702–3706 (2014).

    Article  ADS  Google Scholar 

  6. G. Mie. Ann. Phys. (Leipzig), 25, 377 (1908).

    Article  ADS  MATH  Google Scholar 

  7. A. A. Govyadinov, G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, Phys. Rev. B, 84, 155461 (2011).

    Article  ADS  Google Scholar 

  8. Y. He and T. Zeng, J. Phys. Chem. C, 114, 18023–18030 (2010).

    Google Scholar 

  9. R. Bardhan, N. K. Grady, and J. R. Cole, Nano, 3, No. 3, 744–752 (2009).

    Google Scholar 

  10. A. Bansal, J. S. Sekhon, and S. S. Verma. Plasmonics, 9, 143–150 (2014).

    Article  Google Scholar 

  11. A. Bansal and S. S. Verma, AIP Adv., 4, 057104 (2014) .

    Article  ADS  Google Scholar 

  12. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 82–129 (1983).

    Google Scholar 

  13. P. B. Johnson and R. W. Christy, Phys. Rev. B, 6, No. 12, 4370–4379 (1972).

    Article  ADS  Google Scholar 

  14. N. E. Motl, E. Ewusi-Annan, I. T. Sines, L. Jensen, and R. E. Schaak, J. Phys. Chem. C, 114, 19263–19269 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Luo.

Additional information

Published in Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 6, pp. 955–958, November–December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, D., Liu, J. & Feng, H. Simulated Investigation of Optical Properties in Noble Metallic Alloy Nanosphere. J Appl Spectrosc 82, 1033–1037 (2016). https://doi.org/10.1007/s10812-016-0224-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-016-0224-2

Keywords

Navigation