Advertisement

Journal of Applied Spectroscopy

, Volume 82, Issue 6, pp 961–969 | Cite as

Plasmon Enhancement of Electronic Energy Transfer Between Quantum Dots on the Surface of Nanoporous Silica

  • N. S. Tikhomirova
  • N. A. Myslitskaya
  • I. G. SamusevEmail author
  • V. V. Bryukhanov
Article

We use spectral kinetic methods to study electronic energy transfer processes between semiconductor quantum dots on the surface of wide-pore silica in the absence of and in the presence of silver nanoparticles, obtained by laser ablation methods. We have determined the efficiencies of dipole–dipole energy transfer between two-shell (CdSe/CdS/ZnS) and one-shell (CdSe/ZnS) quantum dots on the surface, the luminescence lifetimes and quantum yields, transfer distances and transfer rate constants. We have studied enhancement of photoprocesses in individual quantum dots and in a pair under the influence of resonant localized plasmons of ablative silver nanoparticles.

Keywords

dipole–dipole energy transfer quantum dots nanoporous silica silver nanoparticles laser ablation lifetime luminescence quantum yield transfer distance transfer rate constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Klimov, Nanocrystal Quantum Dots, 2nd edn., CRC Press (2010).Google Scholar
  2. 2.
    A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Yu. Kruchinin, Optical Properties of Semiconductor Quantum Dots [in Russian], Nauka, St. Petersburg (2011).Google Scholar
  3. 3.
    S. V. Gaponenko, Introduction to Nanophotonics, Cambridge University Press (2010).Google Scholar
  4. 4.
    A. G. Vitukhnovskii, A. A. Vashchenko, V. S. Lebedev, R. B. Vasil′ev, P. N. Brunkov, and D. N. Bychkovskii, Fiz. Tekh. Poluprovodn., 47, No. 7, 962–969 (2013).Google Scholar
  5. 5.
    A. A. Zarubanov, K. S. Zhuravlev, T. A. Duda, and A. V. Okotrub, Pis'ma Zh. Éksp. Teor. Fiz., 95, No. 7, 403–407 (2012).Google Scholar
  6. 6.
    C. Higgins, M. Lunz, A. L. Bradley, V. A. Gerard, S. Byrne, Y. K. Gounko, V. Lesnyak, and N. Gaponik, Opt. Express, 18, No. 24, 24486–24494 (2014).CrossRefADSGoogle Scholar
  7. 7.
    A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fischer, M. G. Bawendi, and H. Mattoussi, J. Am. Chem. Soc., 126, 301–310 (2004).CrossRefGoogle Scholar
  8. 8.
    A. O. Orlova, M. S. Gubanova, V. G. Maslov, G. N. Vinogradova, A. V. Baranov, A. V. Fedorov, and I. Gunko, Opt. Spektrosk., 108, No. 6, 975–982 (2010).Google Scholar
  9. 9.
    V. V. Danilov, A. S. Panfutova, G. M. Ermolaeva, A. I. Khrebtov, and V. B. Shilov, Opt. Spektrosk., 114, No. 6, 967–972 (2013) [V. V. Danilov, A. S. Panfutova, G. M. Ermolaeva, A. I. Khrebtov, and V. B. Shilov, Opt. Spectrosc., 114, No. 6, 880–885 (2013) (English translation)].Google Scholar
  10. 10.
    N. A. Myslitskaya, I. G. Samusev, and V. V. Bryukhanov, Izv. Vuzov. Fizika, 57, No. 7, 52–59 (2014).Google Scholar
  11. 11.
    M. Ghali, J. Lumin., 130, 1254–1257 (2010).CrossRefGoogle Scholar
  12. 12.
    Z. Li, Y. Wang, G. Zhang, W. Xu, and Y. Han, J. Lumin., 130, 995–999 (2010).CrossRefGoogle Scholar
  13. 13.
    M. A. Shivkumar, K. S. Adarsh, and S. R. Inamdar, J. Lumin., 143, 680–686 (2013).CrossRefGoogle Scholar
  14. 14.
    E. I. Zenkevich, A. P. Stupak, C. Goehler, C. Krasselt, and C. von Borczyskowski, ACS Nano, 9, No. 3, 2886–2903 (2015).CrossRefGoogle Scholar
  15. 15.
    M. Henini, Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics, Elsevier Science and Technology Books (2008).Google Scholar
  16. 16.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn., Springer, New York (2006).CrossRefGoogle Scholar
  17. 17.
    D. Kowerko, J. Schuster, N. Amecke, M. Abdel-Mottaleb, R. Dobrawa, F. Würthner, and C. von Borczyskowski, Phys. Chem. Chem. Phys., 12, 4112–4123 (2010).CrossRefGoogle Scholar
  18. 18.
    E. I. Zenkevich, E. I. Sagun, V. N. Knyukshto, A. S. Stasheuski, V. A. Galievsky, A. P. Stupak, T. Blaudeck, and C. von Borczyskowski, J. Phys. Chem. C, 115, 21535–21545 (2011).CrossRefGoogle Scholar
  19. 19.
    A. Al. Salman, A. Tortschanoff, G. van der Zwan, F. van Mourik, and M. Chergui, Chem. Phys., 357, 96–101 (2009).Google Scholar
  20. 20.
    R. Schmidt, C. Krasselt, C. Göhler, and C. von Borczyskowski, ACS Nano, 8, 3505–3521 (2014).Google Scholar
  21. 21.
    M. N. Berberan-Santosh and E. N. Bodunov, Opt. Spektrosk., 97, No. 3, 400–405 (2004) [M. N. Berberan-Santos and E. N. Bodunov, Opt. Spectrosc., 97, No. 3, 375–380 (2004) (English translation)].Google Scholar
  22. 22.
    A. V. Fedorov, A. V. Baranov, and I. D. Rukhlenko, Phys. Rev., 76, 0453332–1 – 045332–7 (2007).Google Scholar
  23. 23.
    E. S. Andrianov, A. A. Pukhov, A. V. Dorofeenko, A. P. Vinogradov, and A. A. Lisyanskii, Zh. Eksp. Teor. Fiz., 144, No. 2(8), 243–252 (2013).Google Scholar
  24. 24.
    A. V. Fedorov, I. D. Rukhlenko, A. V. Baranov, and S. Yu. Kruchinin, Optical Properties of Quantum Dots [in Russian], UITMiO, St. Petersburg (2011).Google Scholar
  25. 25.
    V. V. Bryukhanov, B. F. Minaev, A. V. Tsibul’nikova, N. S. Tikhomirova, and V. A. Slezhkin, Opt. Zh., 81, No. 11, 7–14 (2014).Google Scholar
  26. 26.
    V. V. Klimov, Nanoplasmonics [in Russian], Fizmatlit, Moscow (2009).Google Scholar
  27. 27.
    V. M. Agranovich and M. D. Galanin, Transfer of Electronic Excitation Energy in Condensed Media [in Russian], Nauka, Moscow (1978).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • N. S. Tikhomirova
    • 1
  • N. A. Myslitskaya
    • 1
    • 2
  • I. G. Samusev
    • 1
    Email author
  • V. V. Bryukhanov
    • 1
  1. 1.I. Kant Baltic Fede ral UniversityKaliningradRussia
  2. 2.Kaliningrad State Technical UniversityKaliningradRussia

Personalised recommendations