Skip to main content
Log in

Comparison of the Fourier and Discrete-Variable-Representation Methods in the Numerical Solution of Multidimensional Schrödinger Equations

  • Published:
Journal of Applied Spectroscopy Aims and scope

Results of numerical solutions of multi-dimensional Schrödinger equations by Fourier and discrete-variable-representation (DVR) methods were compared. Both methods showed comparable accuracy in cases with a smooth potential-energy surface (PES) such as the harmonic 2D PES associated with C=O stretching vibrations in CO2 and the 3D PES associated with vibrations of the donor hydroxyl in the methanol dimer. However, calculations made by the Fourier method were an order of magnitude more time consuming. As applied to unsmooth PES, in particular for an electron in square and hexagonal 2D potential wells with vertical walls (where the Fourier method is inadequate), the DVR method enabled the eigenvalues and wave functions to be calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, New York (1945).

    Google Scholar 

  2. I. M. Mills, in: K. N. Rao and C. W. Mathews (Eds.), Molecular Spectroscopy: Modern Research, Vol. 1, Academic Press, New York (1972).

  3. V. Barone, J. Chem. Phys., 122, 014108 (1–10) (2005).

  4. C. C. Lin and J. D. Swalen, Rev. Mod. Phys., 31, 841–888 (1959).

    Article  ADS  Google Scholar 

  5. K. T. Hecht and D. M. Dennison, J. Chem. Phys., 26, 31–47 (1957).

    Article  ADS  Google Scholar 

  6. R. H. Hunt, R. A. Leacock, C. W. Peters, and K. T. Hecht, J. Chem. Phys., 42, 1931–1946 (1965).

    Article  ADS  Google Scholar 

  7. F. Graf, R. Meyer, T. K. Ha, and R. R. Ernst, J. Chem. Phys., 75, 2914–2918 (1981).

    Article  ADS  Google Scholar 

  8. M. T. Weiss and M. W. P. Strandberg, Phys. Rev., 83, 567–575 (1951).

    Article  ADS  Google Scholar 

  9. J. D. Swalen and J. Ibers, J. Chem. Phys., 36, 1914–1918 (1962).

    Article  ADS  Google Scholar 

  10. D. H. Cress and C. R. Quade, J. Chem. Phys., 67, 5695–5701 (1977).

    Article  ADS  Google Scholar 

  11. G. A. Pitsevich and A. E. Malevich, Opt. Photon. J., 2, 332–337 (2012).

    Article  ADS  Google Scholar 

  12. G. A. Pitsevich and A. E. Malevich, Am. J. Chem., 2, 312–321 (2012).

    Article  Google Scholar 

  13. G. A. Pitsevich and A. E. Malevich, Zh. Prikl. Spektrosk., 82, No. 4, 505–518 (2015) [G. A. Pitsevich and A. E. Malevich, J. Appl. Spectrosc., 82, 540–553 (2015)].

  14. G. Pitsevich, A. Malevich, I. Doroshenko, E. Kozlovskaya, V. Pogorelov, V. Sablinskas, and V. Balevicius, Spectrochim. Acta, Part A, 120, 585–594 (2014).

    Article  Google Scholar 

  15. G. Pitsevich and V. Balevicius, J. Mol. Struct., 1072, 38–44 (2014).

    Article  ADS  Google Scholar 

  16. G. Pitsevich, A. Malevich, E. Kozlovskaya, I. Doroshenko, V. Pogorelov, V. Sablinskas, and V. Balevicius, Spectrochim. Acta, Part A, 145, 384–393 (2015).

    Article  ADS  Google Scholar 

  17. G. Pitsevich, A. Malevich, E. Kozlovskaya, I. Doroshenko, V. Sablinskas, V. Pogorelov, D. Dovgal, and V. Balevicius, Vib. Spectrosc., 79, 67–75 (2015).

    Article  Google Scholar 

  18. D. O. Harris, G. G. Engerholm, and W. D. Gwinn, J. Chem. Phys., 43, 1515–1517 (1965).

    Article  ADS  Google Scholar 

  19. R. Meyer, J. Chem. Phys., 52, 2053–2059 (1970).

    Article  ADS  Google Scholar 

  20. http://www.msg.ameslab.gov/GAMESS/GAMESS.html

  21. T. H. Dunning, Jr., J. Chem. Phys., 90, 1007–1023 (1989).

    Article  ADS  Google Scholar 

  22. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  ADS  Google Scholar 

  23. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 37, 785–789 (1988).

    Article  ADS  Google Scholar 

  24. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem., 98, 11623–11627 (1994).

    Article  Google Scholar 

  25. Mathematica, Wolfram Research, Inc.; http://www.wolfram.com/mathematica/

  26. D. T. Colbert and W. H. Miller, J. Chem. Phys., 96, 1982–1991 (1992).

    Article  ADS  Google Scholar 

  27. G. A. Pitsevich, A. E. Malevich, E. N. Kozlovskaya, and U. U. Sapeshko, J. Spectrosc. Dyn., 4:25 (2014).

    Google Scholar 

  28. C. Lanczos, Discourse on Fourier Series, Oliver & Boyd, Edinburgh and London (1966).

    MATH  Google Scholar 

  29. G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Methods for Physicists, Elsevier, Amsterdam (2013).

    MATH  Google Scholar 

  30. V. M. Galitskii, B. M. Karnakov, and V. I. Kogan, Problems in Quantum Mechanics [in Russian], Nauka, Moscow (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Pitsevich.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 6, pp. 813–820, November–December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitsevich, G.A., Malevich, A.E. Comparison of the Fourier and Discrete-Variable-Representation Methods in the Numerical Solution of Multidimensional Schrödinger Equations. J Appl Spectrosc 82, 893–900 (2016). https://doi.org/10.1007/s10812-016-0200-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-016-0200-x

Keywords

Navigation